Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4940932
1.
1.M. F. L. D. Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, “Carbon nanotubes: present and future commercial applications,” science 339, 535539 (2013).
http://dx.doi.org/10.1126/science.1222453
2.
2.S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Development and Application of non-Newtonian flows., edited by D. A. Siginer and H. P. Wang (ASME, New York, FED-vol. 231/MD 661995), pp. 99105.
3.
3.T. Hayat, M. Farooq, and A. Alsaedi, “Homogenous-heterogeneous reactions in the stagnation point flow of carbon nanotubes with Newtonian heating,” AIP Advances 5, 027130 (2015).
http://dx.doi.org/10.1063/1.4908602
4.
4.M. Shiekholeslami and R. Ellahi, “Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid,” Int. J. Heat Mass Transfer 89, 799808 (2015).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.05.110
5.
5.W. A. Khan, Z. H. Khan, and M. Rahi, “Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl,” Nano Sci. 4, 633641 (2014).
6.
6.M. Turkyilmazoglu, “Analytical solutions of single and multi-phase models for the condensation of nanofluid film flow and heat transfer,” Eur. J. Mech. - B/Fluids 53, 272277 (2015).
http://dx.doi.org/10.1016/j.euromechflu.2015.06.004
7.
7.L. J. Crane, “Flow past a stretching plate,” Zeitschrift fur Angewandte Mathematik und Physik 21, 645-641 (1970).
http://dx.doi.org/10.1007/BF01587695
8.
8.M. M. Rashidi, N. Vishnu Ganesh, A. K. Abdul Hakeem, and B. Ganga, “Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation,” J. Molecular Liquids 198, 234238 (2014).
http://dx.doi.org/10.1016/j.molliq.2014.06.037
9.
9.M. Turkyilmazoglu, “Exact solutions for two-dimensional laminar flow over a continuously stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid,” Int. J. Heat Mass Transfer 72, 18 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.01.009
10.
10.S. Mukhopadhyay, “Effects of thermal radiation and variable fluid viscosity on stagnation point flow past a porous stretching sheet,” Meccanica 48, 17171730 (2013).
http://dx.doi.org/10.1007/s11012-013-9704-0
11.
11.K. Bhattacharyya, “Heat transfer analysis in unsteady boundary layer stagnation-point flow towards a shrinking / stretching sheet,” Ain Shams Eng. J. 4, 259264 (2013).
http://dx.doi.org/10.1016/j.asej.2012.07.002
12.
12.T. Hayat and S. A. Shehzad, “Thermally stratified radiative flow of third grade fluid over a stretching surface,” J. Thermophys. Heat Transfer 28, 155161 (2014).
http://dx.doi.org/10.2514/1.T4113
13.
13.M. Shiekholeslami, R. Ellahi, H. R. Ashorynejad, G. Domairry, and T. Hayat, “Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium,” J. Comput. Theor. Nanos. 11, 486496 (2014).
http://dx.doi.org/10.1166/jctn.2014.3384
14.
14.L. Roberts, “On the melting of a semi infinite body of ice placed in a hot stream of air,” J. Fluid Mech. 4, 505528 (1958).
http://dx.doi.org/10.1017/S002211205800063X
15.
15.N. A. Yacob, A. Ishak, and I. Pop, “Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid,” Computers & Fluids 47, 1621 (2011).
http://dx.doi.org/10.1016/j.compfluid.2011.01.040
16.
16.N. Bachok, A. Ishak, and I. Pop, “Melting heat transfer in boundary layer stagnation-point flow towards a stretching / shrinking sheet,” Physics Letters A 374, 40754079 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.08.032
17.
17.C. J. Ho and J.Y. Gao, “An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure,” Int. J. Heat Mass Transfer 62, 28 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.02.065
18.
18.T. Hayat, M. Farooq, and A. Alsaedi, “Melting heat transfer in the stagnation point flow of Maxwell fluid with double-diffusive convection,” Int. J. Numer. Methods Heat Fluid Flow 24, 760774 (2014).
http://dx.doi.org/10.1108/HFF-09-2012-0219
19.
19.K. Das, “Radiation and melting effects on MHD boundary layer flow over a moving surface,” Ain Shams Eng. J. 5, 12071214 (2014).
http://dx.doi.org/10.1016/j.asej.2014.04.008
20.
20.S. J. Liao, Homotopy Analysis Method in Non-Linear Differential Equations (Springer and Higher Education Press, Heidelberg, 2012).
21.
21.S. Abbasbandy and M. Jalil, “Determination of optimal convergence-control parameter value in homotopy analysis method,” Numer. Algor. 64, 593605 (2013).
http://dx.doi.org/10.1007/s11075-012-9680-9
22.
22.T. Hussain, T. Hayat, S. A. Shehzad, A. Alsaedi, and B. Chen, “A model of solar radiation and Joule heating in flow of third grade nanofluid,” ZNA. 70, 177184 (2015).
23.
23.S. Xinhui, Z. Liancun, Z. Xinxin, and S. Xinyi, “Homotopy analysis method for the asymmetric laminar flow and heat transfer of viscous fluid between contracting rotating disks,” Appl. Math. Model. 36, 18061820 (2012).
http://dx.doi.org/10.1016/j.apm.2011.09.010
24.
24.T. Hayat, M. S. Anwar, M. Farooq, and A. Alsaedi, “Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer,” Plos one. 10, e0118815 (2015).
http://dx.doi.org/10.1371/journal.pone.0118815
25.
25.Y. Cengel and J. Cimbala, Fluid Mechanics Fundamentals and Applications. 2013.
26.
26.J. Harris, Rheology and non-Newtonian fluids (London Longman, 1977).
27.
27.V. Alexiades and A. D. Solomen, Mathematical Modelling of Melting and Freezing Processes (Hemispher publishing, 1993).
28.
28.Ch. K. Kumar and S. Bandari, “Melting heat transfer in boundary layer stagnation point flow of a nanofluid towards a stretching/shrinking sheet,” Can. J. Phys. 92, 17031708 (2014).
http://dx.doi.org/10.1139/cjp-2013-0508
29.
29.Q. Xue, “Model for thermal conductivity of carbon nanotube based composites,” Phys. B Condens Matter 368, 302307 (2005).
http://dx.doi.org/10.1016/j.physb.2005.07.024
30.
30.U. Farooq, Y. L. Zhao, T. Hayat, and S. J. Liao, “Application of the HAM-based mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nanofluid,” Computers & Fluids 111, 6475 (2015).
http://dx.doi.org/10.1016/j.compfluid.2015.01.005
31.
31.T. R. Mahapatra and A. Gupta, “Heat transfer in stagnation-point flow towards a stretching sheet,” Heat Mass Trans. 38, 517521 (2002).
http://dx.doi.org/10.1007/s002310100215
32.
32.S. Pop, T. Grosan, and I. Pop, “Radiation effects on the flow near the stagnation point of a stretching sheet,” TECHNISCHE MECHANIK 25, 100106 (2004).
33.
33.P. Sharma and G. Singh, “Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet,” J. Appl. Fluid Mech. 2, 1321 (2009).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4940932
Loading
/content/aip/journal/adva/6/1/10.1063/1.4940932
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4940932
2016-01-28
2016-12-10

Abstract

This work concentrates on the mathematical modeling for stagnation point flow of nanofluids over an impermeable stretching sheet with variable thickness. Carbon nanotubes [single-wall carbon nanotubes(SWCNTs) and multi-wall carbon nanotubes(MWCNTs)] as the nanoparticles are utilized. Water and kerosene oil are taken as the base fluids. Heat transfer through melting effect is discussed. Transformation procedure is adapted to obtain the non-linear ordinary differential equations from the fundamental laws of mass, linear momentum and energy. The optimal values of convergence control parameters and corresponding individual and total residual errors for SWCNTs and MWCNTs are computed by means of homotopy analysis method (HAM) based BVPh 2.0. Characteristics of different involved parameters on the velocity, temperature, skin friction coefficient and Nusselt number are discussed. Higher velocity profile is observed for wall thickness parameter in case of watercarbon nanotubes when compared with the kerosene oil carbon nanotubes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4940932.html;jsessionid=YSrVOeM8zPtMzEQeTK4XYnsE.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4940932&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4940932&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4940932'
Right1,Right2,Right3,