Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4941041
1.
1.K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
http://dx.doi.org/10.1038/nature11458
2.
2.N. O. Weiss, H. L. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, and X. F. Duan, Adv. Mater. 24, 5782 (2012).
http://dx.doi.org/10.1002/adma.201201482
3.
3.H. Gwon, H. S. Kim, K. U. Lee, D. H. Seo, Y. C. Park, Y. S. Lee, B. T. Ahn, and K. Kang, Energy Environ. Sci. 4, 1277 (2011).
http://dx.doi.org/10.1039/c0ee00640h
4.
4.A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Gatti, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
5.
5.K. Lee, H. Y. Kim, M. Lotya, J. N. Coleman, G. T. Kim, and G. S. Duesberg, Adv. Mater. 23, 4178 (2011).
http://dx.doi.org/10.1002/adma.201101013
6.
6.R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, and G. Moriarty, Adv. Mater. 23, 3944 (2011).
http://dx.doi.org/10.1002/adma.201102584
7.
7.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
8.
8.B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano 5, 9934 (2011).
http://dx.doi.org/10.1021/nn203715c
9.
9.Z. Y. Yin, H. Li, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen, and H. Zhang, ACS Nano 6, 74 (2012).
http://dx.doi.org/10.1021/nn2024557
10.
10.K. Dolui, I. Rungger, and S. Sanvito, Phys. Rev. B 87, 165402 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165402
11.
11.H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotion, Nano Lett. 13, 3626 (2013).
http://dx.doi.org/10.1021/nl4014748
12.
12.M. Ghorbani-Asl, S. Borini, A. Kuc, and T. Heine, Phys. Rev. B 87, 235434 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235434
13.
13.W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J. C. Idrobo, Nano Lett. 13, 2615 (2013).
http://dx.doi.org/10.1021/nl4007479
14.
14.Y. F. Li, Z. Zhou, S. B. Zhang, and Z. F. Chen, J. Am. Chem. Soc. 130, 16739 (2008).
http://dx.doi.org/10.1021/ja805545x
15.
15.H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov, Phys. Rev. Lett. 109, 035503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.035503
16.
16.T. Y. Kim, K. Cho, W. Park, J. Park, Y. Song, S. Hong, W. K. Hong, and T. Lee, ACS Nano 8, 2774 (2014).
http://dx.doi.org/10.1021/nn4064924
17.
17.M. Chen, H. Nam, S. Wi, L. Ji, X. Ren, L. Bian, S. Lu, and X. Liang, Appl. Phys. Lett. 103, 142110 (2013).
http://dx.doi.org/10.1063/1.4824205
18.
18.H. P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev.B 88, 035301 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.035301
19.
19.K. Q. Dang and A. E. Spearot, J. Appl. Phys. 116, 013508 (2014).
http://dx.doi.org/10.1063/1.4886183
20.
20.L. Cai, J. F. He, Q. H. Liu, T. Yao, L. Chen, W. S. Yan, F. C. Hu, Y. Jiang, Y. D. Zhao, T. D. Hu, Z. H. Sun, and S. Q. Wei, J. Am. Chem. Soc. 137, 2622 (2015).
http://dx.doi.org/10.1021/ja5120908
21.
21.Y, Zhou, P. Yang, H. Zu, F. Gao, and X. Zu, Phys. Chem. Chem. Phys. 15, 10385 (2013).
http://dx.doi.org/10.1039/c3cp50381j
22.
22.Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, J. B. Lu, and B. B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011).
http://dx.doi.org/10.1039/c1cp21159e
23.
23.C. Ataca and S. Ciraci, J. Phys. Chem. C 115, 13303 (2011).
http://dx.doi.org/10.1021/jp2000442
24.
24.H. L. Zheng, B. S. Yang, D. D. Wang, R. L. Han, X. B. Du, and Y. Yan, Appl. Phys. Lett. 104, 132403 (2014).
http://dx.doi.org/10.1063/1.4870532
25.
25.K. S. Yong, D. M. Otalvaro, I. Duchemin, M. Saeys, and C. Joachim, Phys, Rev. B 77, 205429 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.205429
26.
26.A. N. Enyashin, M. Bar-Sadan, L. Houben, and G. Seifert, J. Phys. Chem. C 117, 10842 (2013).
http://dx.doi.org/10.1021/jp403976d
27.
27.O. Lehtinen, H. P. Komsa, A. Pulkin, M. B. Whitwick, M. W. Chen, T. Lehnert, M. J. Mohn, O. V. Yazyev, A. Kis, U. Kaiser, and A. V. Krasheninnikov, ACS Nano. 9, 3274 (2015).
http://dx.doi.org/10.1021/acsnano.5b00410
28.
28.X. L. Zou and B. I. Yakobson, small 11, 4503 (2015).
http://dx.doi.org/10.1002/smll.201500811
29.
29.S. Najmaei, Z. Liu, W. Zhou, X. L. Zou, G. Shi, S. D. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Nature Mater. 12, 754 (2013).
http://dx.doi.org/10.1038/nmat3673
30.
30.Q. Li, J. T. Newberg, E. C. Walter, J. C. Hemminger, and R. M. Penner, Nano Lett. 4, 277 (2004).
http://dx.doi.org/10.1021/nl035011f
31.
31.Q. Li, E. C. Walter, W. E. van der Veer, B. J. Murray, J. T. Newberg, and R. M. Penner, J. Phys. Chem. B 109, 3169 (2005).
http://dx.doi.org/10.1021/jp045032d
32.
32.E. N. Nora, R. Velázquez-Castillo, D. H. Galván, A. Camacho, and M. Jose-Yacamán, Appl. Catal. A 328, 88 (2007).
http://dx.doi.org/10.1016/j.apcata.2007.05.031
33.
33.Y. W. Son, M. L. Cohen, and S. G. Louie, Nature 444, 347 (2006).
http://dx.doi.org/10.1038/nature05180
34.
34.H. Sevincli, M. Topsakal, E. Durgun, and S. Ciraci, Phys. Rev. B 77, 195434 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195434
35.
35.H. Sahin, R. T. Senger, and S. Ciraci, J. Appl. Phys. 108, 074301 (2010).
http://dx.doi.org/10.1063/1.3489919
36.
36.H. Pan and Y. W. Zhang, J. Mater. Chem. 22, 7280 (2012).
http://dx.doi.org/10.1039/c2jm15906f
37.
37.X. M. Li, M. Q. Long, L. L. Cui, J. Xiao, X. J. Zhang, D. Zhang, and H. Xu, Phys. Lett. A 378, 2701 (2014).
http://dx.doi.org/10.1016/j.physleta.2014.07.024
38.
38.C. Cao, L. N. Chen, M. Q. Long, W. R. Huang, and H. Xu, J. Appl. Phys. 111, 113708 (2012).
http://dx.doi.org/10.1063/1.4723832
39.
39.X. J. Zhang, K. Q. Chen, L. M. Tang, and M. Q. Long, Phys. Lett. A 375, 3319 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.07.029
40.
40.G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
41.
41.G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
42.
42.M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
43.
43.M. G. Zeng, Y. P. Feng, and G. C. Liang, Nano Lett. 11, 1369 (2011).
http://dx.doi.org/10.1021/nl2000049
44.
44.S. L. Liu, A. Nurbawono, and C. Zhang, Sci. Rep. 5, 15386 (2015).
http://dx.doi.org/10.1038/srep15386
45.
45.C. Zhang, J. At. Mol. Sci. 5, 95 (2014).
46.
46.M. Buttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6207
47.
47.G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, and M. A. Ratner, Nature Chemistry 2, 223 (2010).
http://dx.doi.org/10.1038/nchem.546
48.
48.L. Shen, M. Zeng, S. Li, M. B. Sullivan, and Y. P. Feng, Phys. Rev. B 86, 115419 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115419
49.
49.R. Chowdhury, S. Adhikari, P. Rees, and S. P. Wilks, Phys. Rev. B 83, 045401 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.045401
50.
50.S. L. Yan, M. Q. Long, X. J. Zhang, and H. Xu, Phys. Lett. A 378, 960 (2014).
http://dx.doi.org/10.1016/j.physleta.2014.01.042
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4941041
Loading
/content/aip/journal/adva/6/1/10.1063/1.4941041
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4941041
2016-01-26
2016-12-05

Abstract

The nonlinear spin-dependent transport properties in zigzag molybdenum-disulfide nanoribbons (ZMNRs) with line defects are investigated systematically using nonequilibrium Green’s function method combined with density functional theory. The results show that the line defects can enhance the electronic transfer ability of ZMNRs. The types and locations of the line defects are found critical in determining the spin polarization and the current-voltage (-) characteristics of the line defected ZMNRs. For the same defect type, the total currents of the ribbons with the line defects in the centers are lager than those on the edges. And for the same location, the total currents of the systems with the sulfur (S) line defect are larger than the according systems with the molybdenum(Mo) line defect. All the considered systems present magnetism properties. And in the S line defected systems, the spin reversal behaviors can be observed. In both the spin-up and spin-down states of the Mo line defected systems, there are obvious negative differential resistance behaviors. The mechanisms are proposed for these phenomena.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4941041.html;jsessionid=p-ZGcesPaKr1CRV9FXDIachM.x-aip-live-06?itemId=/content/aip/journal/adva/6/1/10.1063/1.4941041&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4941041&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4941041'
Right1,Right2,Right3,