Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4941063
1.
1.O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta I Morral, Appl. Phys. Lett. 97(20), 201907 (2010).
http://dx.doi.org/10.1063/1.3519980
2.
2.A. M. Katzenmeyer, F. Leonard, A. A. talin, P.-S. Wong, and D. L. Huffaker, Nano Lett. 10(12), 4935 (2010).
http://dx.doi.org/10.1021/nl102958g
3.
3.C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. laLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, Nano Lett. 12(9), 4484 (2012).
http://dx.doi.org/10.1021/nl301391h
4.
4.M. H. M. van Weert, O. Wunnicke, A. L. Roest, T. J. Eijkemans, A.Y. Silov, J. E. M. Haverkort, G. W. t Hooft, and E. P. A. M. Bakkers, Appl. Phys. Lett. 88(4), 043109 (2006).
http://dx.doi.org/10.1063/1.2168255
5.
5.H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Huges, L. M. Hertz, and M. B. Jihnston, Nanotechnology 24(21), 214006 (2013).
http://dx.doi.org/10.1088/0957-4484/24/21/214006
6.
6.H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Doecherty, S. Paiman, Q. Gao, H. H Tan, C. Jagadish, J. Lloyd-Hughes, L. M. hertz, and M. B. Johnston, Nano Lett. 12(10), 5325 (2012).
http://dx.doi.org/10.1021/nl3026828
7.
7.V. Dhaka, J. Oksinen, H. Jiang, T. Haggren, A. Nykänen, R. Sanatinia, J.-P. Kakko, T. Huhtio, M. Mattila, J. Ruokolainen, S. Anand, E. Kauppinen, and H. Lipsanen, Nano Lett. 13(8), 3581 (2013).
http://dx.doi.org/10.1021/nl4012613
8.
8.N. Tajik, C. M. Haapamaki, and R. R. LaPierre, Nanotechnology 23(31), 315703 (2012).
http://dx.doi.org/10.1088/0957-4484/23/31/315703
9.
9.M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, and E. I. Kauppinen, Appl. Phys. Lett. 90(3), 033101 (2007).
http://dx.doi.org/10.1063/1.2431711
10.
10.M. Bosund, P. Mattila, A. Aierkin, T. Hakkarainen, H. Koskenvaara, M. Sopanen, V.-M. Airaksinen, and H. Lipsanen, Applied Surface Science 256(24), 7434 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.05.085
11.
11.H. Jussila, P. Mattila, J. Oksanen, A. Perros, J. Riikonen, M. Bosund, A. Varpula, T. Huhtio, H. Lipsanen, and M. Sopanen, Appl. Phys. Lett. 100(7), 071606 (2012).
http://dx.doi.org/10.1063/1.3687199
12.
12.P. Mattila, M. Bosund, H. Jussila, A. Aierken, J. Riikonen, T. Hutio, H. Lipsanen, and M. Sopanen, Applied Surface Science 314(2014), 570 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.07.024
13.
13.S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, Nano Lett. 11(11), 4805 (2011).
http://dx.doi.org/10.1021/nl202628m
14.
14.H. Hakola, A. P. Perros, P. Myllyperkiö, K. Kurotobi, H. Lipsanen, H. Imahori, H. Lemmetyinen, and N. V. Tkachenko, Chemical Physics Letters 592, 47 (2014).
http://dx.doi.org/10.1016/j.cplett.2013.11.028
15.
15.H. Saarenpää, E. Essi Sariola-Leikas, A. P. Perros, J. M. Kontio, A. Efimov, H. Hayashi, H. Lipsanen, H. Imahori, H. Lemmetyinen, and N. V. Tkachenko, J. Phys. Chem C 116(3), 2336 (2012).
http://dx.doi.org/10.1021/jp2104769
16.
16.M. M. Frank, G. D. Wilk, S. Starodub, T. Gustafsson, E. Garfunkel, Y.J. Chabel, J. Grazul, and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005).
http://dx.doi.org/10.1063/1.1899745
17.
17.C. L. Hinke, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 92(7), 071901 (2008).
http://dx.doi.org/10.1063/1.2883956
18.
18.V. Dhaka, T. Haggren, H. Jussila, H. Jiang, E. Kauppinen, T. Huhtio, M. Sopanen, and H. Lipsanen, Nano Lett. 12(4), 1912 (2012).
http://dx.doi.org/10.1021/nl204314z
19.
19.S. Klejna and S. D. Elliott, J. Phys. Chem. C 116(1), 643 (2012).
http://dx.doi.org/10.1021/jp206566y
20.
20.M. Bosund, T. Sajavaara, M. Latinen, T. Huhtio, M. Putkonen, V.-M. Airaksinen, and H. Lipsanen, Applied Surface Science 257(17), 7827 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.04.037
21.
21.H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, M. A. Fickenscher, S. Perera, T. B. Hoang, L. M. Smith, H. E. Jackson, J. M. yarrison-Rice, X. Zhang, and J. Zou, Nano Lett. 9(2), 695 (2005).
http://dx.doi.org/10.1021/nl803182c
22.
22.A. P. Perros, H. Hakola, T. Sajavaara, T. Huhtio, and H. Lipsanen, J. Phys. D. Appl. Phys. 46(50), 505502 (2013).
http://dx.doi.org/10.1088/0022-3727/46/50/505502
23.
23.H. B. Park, M. Cho, J. Park, C. S. Hwang, J.-C. Lee, and S.-J. Oh, J. Appl. Phys. 94(3), 1898 (20013).
http://dx.doi.org/10.1063/1.1590418
24.
24.S. Huang, Q. jiang, S. Yang, Z. Tang, and K. J. Chen, IEEE Electron Device Lett. 34(42), 193 (2013).
http://dx.doi.org/10.1109/LED.2012.2229106
25.
25.K. J. Chen and S. Huang, Semicond. Sci. Technol. 28(7), 074015 (2013).
http://dx.doi.org/10.1088/0268-1242/28/7/074015
26.
26.A. P. Perros, Thermal and Plasma-Enhanced Atomic Layer Deposition: The Study of and Employment in Various Nanotechnology Applications (Doctoral Thesis),Aalto University, 2015, 57–58.
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4941063
Loading
/content/aip/journal/adva/6/1/10.1063/1.4941063
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4941063
2016-01-26
2016-10-01

Abstract

Low temperature (∼200 °C) grownatomic layer deposition(ALD) films of AlN, TiN, AlO, GaN, and TiO were tested for protective capping and surface passivation of bottom-up grownIII-V(GaAs and InP) nanowires (NWs), and top-down fabricated InPnanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAssurface as measured by photoluminescence(PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick AlO. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InPsurface. Top-down fabricated InPnanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick AlO layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high- dielectrics AlN and AlO provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4941063.html;jsessionid=Kix_tH8kPObVEKqpUPcDnN1R.x-aip-live-02?itemId=/content/aip/journal/adva/6/1/10.1063/1.4941063&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4941063&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4941063'
Right1,Right2,Right3,