Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta I Morral, Appl. Phys. Lett. 97(20), 201907 (2010).
2.A. M. Katzenmeyer, F. Leonard, A. A. talin, P.-S. Wong, and D. L. Huffaker, Nano Lett. 10(12), 4935 (2010).
3.C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A. W. Bushmaker, S. laLumondiere, T.-W. Yeh, M. L. Povinelli, C. Zhou, P. D. Dapkus, and S. B. Cronin, Nano Lett. 12(9), 4484 (2012).
4.M. H. M. van Weert, O. Wunnicke, A. L. Roest, T. J. Eijkemans, A.Y. Silov, J. E. M. Haverkort, G. W. t Hooft, and E. P. A. M. Bakkers, Appl. Phys. Lett. 88(4), 043109 (2006).
5.H. J. Joyce, C. J. Docherty, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Huges, L. M. Hertz, and M. B. Jihnston, Nanotechnology 24(21), 214006 (2013).
6.H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Doecherty, S. Paiman, Q. Gao, H. H Tan, C. Jagadish, J. Lloyd-Hughes, L. M. hertz, and M. B. Johnston, Nano Lett. 12(10), 5325 (2012).
7.V. Dhaka, J. Oksinen, H. Jiang, T. Haggren, A. Nykänen, R. Sanatinia, J.-P. Kakko, T. Huhtio, M. Mattila, J. Ruokolainen, S. Anand, E. Kauppinen, and H. Lipsanen, Nano Lett. 13(8), 3581 (2013).
8.N. Tajik, C. M. Haapamaki, and R. R. LaPierre, Nanotechnology 23(31), 315703 (2012).
9.M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, and E. I. Kauppinen, Appl. Phys. Lett. 90(3), 033101 (2007).
10.M. Bosund, P. Mattila, A. Aierkin, T. Hakkarainen, H. Koskenvaara, M. Sopanen, V.-M. Airaksinen, and H. Lipsanen, Applied Surface Science 256(24), 7434 (2010).
11.H. Jussila, P. Mattila, J. Oksanen, A. Perros, J. Riikonen, M. Bosund, A. Varpula, T. Huhtio, H. Lipsanen, and M. Sopanen, Appl. Phys. Lett. 100(7), 071606 (2012).
12.P. Mattila, M. Bosund, H. Jussila, A. Aierken, J. Riikonen, T. Hutio, H. Lipsanen, and M. Sopanen, Applied Surface Science 314(2014), 570 (2014).
13.S. Naureen, R. Sanatinia, N. Shahid, and S. Anand, Nano Lett. 11(11), 4805 (2011).
14.H. Hakola, A. P. Perros, P. Myllyperkiö, K. Kurotobi, H. Lipsanen, H. Imahori, H. Lemmetyinen, and N. V. Tkachenko, Chemical Physics Letters 592, 47 (2014).
15.H. Saarenpää, E. Essi Sariola-Leikas, A. P. Perros, J. M. Kontio, A. Efimov, H. Hayashi, H. Lipsanen, H. Imahori, H. Lemmetyinen, and N. V. Tkachenko, J. Phys. Chem C 116(3), 2336 (2012).
16.M. M. Frank, G. D. Wilk, S. Starodub, T. Gustafsson, E. Garfunkel, Y.J. Chabel, J. Grazul, and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005).
17.C. L. Hinke, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, Appl. Phys. Lett. 92(7), 071901 (2008).
18.V. Dhaka, T. Haggren, H. Jussila, H. Jiang, E. Kauppinen, T. Huhtio, M. Sopanen, and H. Lipsanen, Nano Lett. 12(4), 1912 (2012).
19.S. Klejna and S. D. Elliott, J. Phys. Chem. C 116(1), 643 (2012).
20.M. Bosund, T. Sajavaara, M. Latinen, T. Huhtio, M. Putkonen, V.-M. Airaksinen, and H. Lipsanen, Applied Surface Science 257(17), 7827 (2011).
21.H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, M. A. Fickenscher, S. Perera, T. B. Hoang, L. M. Smith, H. E. Jackson, J. M. yarrison-Rice, X. Zhang, and J. Zou, Nano Lett. 9(2), 695 (2005).
22.A. P. Perros, H. Hakola, T. Sajavaara, T. Huhtio, and H. Lipsanen, J. Phys. D. Appl. Phys. 46(50), 505502 (2013).
23.H. B. Park, M. Cho, J. Park, C. S. Hwang, J.-C. Lee, and S.-J. Oh, J. Appl. Phys. 94(3), 1898 (20013).
24.S. Huang, Q. jiang, S. Yang, Z. Tang, and K. J. Chen, IEEE Electron Device Lett. 34(42), 193 (2013).
25.K. J. Chen and S. Huang, Semicond. Sci. Technol. 28(7), 074015 (2013).
26.A. P. Perros, Thermal and Plasma-Enhanced Atomic Layer Deposition: The Study of and Employment in Various Nanotechnology Applications (Doctoral Thesis),Aalto University, 2015, 57–58.

Data & Media loading...


Article metrics loading...



Low temperature (∼200 °C) grownatomic layer deposition(ALD) films of AlN, TiN, AlO, GaN, and TiO were tested for protective capping and surface passivation of bottom-up grownIII-V(GaAs and InP) nanowires (NWs), and top-down fabricated InPnanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAssurface as measured by photoluminescence(PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick AlO. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InPsurface. Top-down fabricated InPnanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick AlO layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high- dielectrics AlN and AlO provides moderate surface passivation as well as long term protection from oxidation and environmental attack.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd