Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4941316
1.
1.U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).
http://dx.doi.org/10.1038/nature05056
2.
2.S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
http://dx.doi.org/10.1126/science.1166767
3.
3.C. Pfleiderer, T. Adams, A. Bauer, W. Biberacher, B. Binz, F. Birkelbach, P. Böni, C. Franz, R. Georgii, M. Janoschek, F. Jonietz, T. Keller, R. Ritz, S. Mühlbauer, W. Münzer, A. Neubauer, B. Pedersen, and A. Rosch, J. Phys.: Condens. Matter 22, 164207 (2010).
http://dx.doi.org/10.1088/0953-8984/22/16/164207
4.
4.N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter, K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science 341, 636 (2013).
http://dx.doi.org/10.1126/science.1240573
5.
5.F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, and A. Rosch, Science 330, 1648 (2010).
http://dx.doi.org/10.1126/science.1195709
6.
6.A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152 (2013).
http://dx.doi.org/10.1038/nnano.2013.29
7.
7.S. Zhang, A. A. Baker, S. Komineas, and T. Hesjedal, Sci. Rep. 5, 15773 (2015).
http://dx.doi.org/10.1038/srep15773
8.
8.X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Mater. 10, 106 (2011).
http://dx.doi.org/10.1038/nmat2916
9.
9.N. Kanazawa, J. H. Kim, D. S. Inosov, J. S. White, N. Egetenmeyer, J. L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keimer, and Y. Tokura, Phys. Rev. B 86, 134425 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134425
10.
10.Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, and Y. Tokura, Nat. Commun. 6, 7638 (2015).
http://dx.doi.org/10.1038/ncomms8638
11.
11.S. Heinze, K. von Bergmann, M. Menze, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, Nat. Phys. 7, 713 (2011).
http://dx.doi.org/10.1038/nphys2045
12.
12.J. Li, A. Tan, K. W. Moon, A. Doran, M. A. Marcus, A. T. Young, E. Arenholz, S. Ma, R. F. Yang, C. Hwang, and Z. Q. Qiu, Nat. Commun. 5, 4704 (2014).
http://dx.doi.org/10.1038/ncomms5704
13.
13.B. F. Miao, L. Sun, Y. W. Wu, X. D. Tao, X. Xiong, Y. Wen, R. X. Cao, P. Wang, D. Wu, Q. F. Zhan, B. You, J. Du, R. W. Li, and H. F. Ding, Phys. Rev. B 90, 174411 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.174411
14.
14.D. A. Gilbert, B. B. Maranville, A. L. Balk, B. J. Kirby, P. Fischer, D. T. Pierce, J. Unguris, J. A. Borchers, and K. Liu, Nat. Commun. 6, 8462 (2015).
http://dx.doi.org/10.1038/ncomms9462
15.
15.W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch, F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O. Heinonen, S. G. E. te Velthuis, and A. Hoffmann, Science 349, 283 (2015).
http://dx.doi.org/10.1126/science.aaa1442
16.
16.D. Bloch, J. Voiron, V. Jaccarino, and J. H. Wernick, Phys. Lett. A 51, 259 (1975).
http://dx.doi.org/10.1016/0375-9601(75)90438-7
17.
17.K. Nakamura-Messenger, L. P. Keller, S. J. Clemett, S. Messenger, J. H. Jones, R. L. Palma, R. O. Pepin, W. Kloeck, M. E. Zolensky, and H. Tatsuoka, Am. Mineral. 95, 221 (2010).
http://dx.doi.org/10.2138/am.2010.3263
18.
18.Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Phys. Rev. Lett. 110, 117202 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.117202
19.
19.E. Magnanoa, E. Carleschia, A. Nicolaoua, T. Pardinia, M. Zangrandoa, and F. Parmigiania, Surf. Sci. 600, 3932 (2006).
http://dx.doi.org/10.1016/j.susc.2006.02.067
20.
20.E. Karhu, S. Kahwaji, T. L. Monchesky, C. Parsons, M. D. Robertson, and C. Maunders, Phys. Rev. B 82, 184417 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.184417
21.
21.S. Higashi, P. Kocan, and H. Tochihara, Phys. Rev. B 79, 205312 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205312
22.
22.B. Wiedemann, S. L. Zhang, Y. Khaydukov, T. Hesjedal, O. Soltwedel, T. Keller, S. Mühlbauer, A. Chacon, T. Adams, M. Halder, C. Pfleiderer, and P. Böni, Phys. Rev. B (2015) submitted.
23.
23.A. Bauer and C. Pfleiderer, Phys. Rev. B 85, 214418 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.214418
24.
24.A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura, Nano Letters 12, 1673 (2012).
http://dx.doi.org/10.1021/nl300073m
25.
25.T. L. Monchesky, J. C. Loudon, M. D. Robertson, and A. N. Bogdanov, Phys. Rev. Lett. 112, 059701 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.059701
26.
26.G. van der Laan, J. Phys.: Conf. Ser. 430, 012127 (2013).
http://dx.doi.org/10.1088/1742-6596/430/1/012127
27.
27.G. van der Laan and B. T. Thole, Phys. Rev. B 43, 13401 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.13401
28.
28.G. van der Laan and A. I. Figueroa, Coord. Chem. Rev. 277-278, 95 (2014).
http://dx.doi.org/10.1016/j.ccr.2014.03.018
29.
29.A. Sulpice, U. Gottlieb, M. Affronte, and O. Laborde, J. Magn. Magn. Mater. 272–276, 519 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.12.364
30.
30.S. Zhou, A. Shalimov, K. Potzger, M. Helm, J. Fassbender, and H. Schmidt, Phys. Rev. B 80, 174423 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.174423
31.
31.S. Yabuuchi, H. Kageshima, Y. Ono, M. Nagase, A. Fujiwara, and E. Ohta, Phys. Rev. B 78, 045307 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045307
32.
32.V. N. Men’shov, V. V. Tugushev, S. Caprara, and E. V. Chulkov, Phys. Rev. B 83, 035201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035201
33.
33.V. V. Rylkov, A. S. Bugaev, O. A. Novodvorskii, V. V. Tugushev, E. T. Kulatov, A. V. Zenkevich, A. S. Semisalova, S. N. Nikolaev, A. S. Vedeneev, A. V. Shorokhova, D. V. Aver’yanov, K. Y. Chernoglazov, E. A. Gan’shina, A. B. Granovsky, Y. Wang, V. Y. Panchenko, and S. Zhou, J. Magn. Magn. Mater. 383, 39 (2015).
http://dx.doi.org/10.1016/j.jmmm.2014.09.028
34.
34.T. Takeuchi, Y. Hirayama, and M. Futamoto, IEEE Trans. Magn. 29, 3090 (1993).
http://dx.doi.org/10.1109/20.280890
35.
35.M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B 71, 033302 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.033302
36.
36.P. R. Bandaru, J. Park, J. S. Lee, Y. J. Tang, L.-H. Chen, S. Jin, S. A. Song, and J. R. O’Brien, Appl. Phys. Lett. 89, 112502 (2006).
http://dx.doi.org/10.1063/1.2243802
37.
37.H. Francois-St-Cyr, E. Anoshkina, F. Stevie, L. Chow, K. Richardson, and D. Zhou, J. Vac. Sci. Technol. B 19, 1769 (2001).
http://dx.doi.org/10.1116/1.1396638
38.
38.A. Wolska, K. Lawniczak-Jablonska, M. Klepka, M. S. Walczak, and A. Misiuk, Phys. Rev. B 75, 113201 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.113201
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4941316
Loading
/content/aip/journal/adva/6/1/10.1063/1.4941316
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4941316
2016-01-29
2016-12-09

Abstract

Magnetic skyrmionmaterials have the great advantage of a robust topological magnetic structure, which makes them stable against the superparamagnetic effect and therefore a candidate for the next-generation of spintronic memory devices. Bulk MnSi, with an ordering temperature of 29.5 K, is a typical skyrmion system with a propagation vector periodicity of ∼18 nm. One crucial prerequisite for any kind of application, however, is the observation and precise control of skyrmions in thin films at room-temperature. Strain in epitaxial MnSi thin films is known to raise the transitiontemperature to 43 K. Here we show, using magnetometry and x-ray spectroscopy, that the transitiontemperature can be raised further through proximity coupling to a ferromagnetic layer. Similarly, the external field required to stabilize the helimagnetic phase is lowered. Transmission electron microscopy with element-sensitive detection is used to explore the structural origin of ferromagnetism in these Mn-doped substrates. Our work suggests that an artificial pinning layer, not limited to the MnSi/Si system, may enable room temperature, zero-field skyrmionthin-film systems, thereby opening the door to device applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4941316.html;jsessionid=DUz3uvfBLDWVmCVH1fzPrg9Q.x-aip-live-02?itemId=/content/aip/journal/adva/6/1/10.1063/1.4941316&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4941316&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4941316'
Right1,Right2,Right3,