Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. M. Welsch, B. Mihailova, M. Gospodinov, R. Stosch, B. Guttler, and U. Bismayer, J. Phys: Condens. Matter 21, 235901 (2009).
2.B. Maier, B. Mihailova, C. Paulmann, J. Ihringer, M. Gospodinov, R. Stosch, B. Guttler, and U. Bismayer, Phys. Rev. B 79, 224108 (2009).
3.B. J. Maier, A. M. Welsch, B. Mihailova, R. J. Angel, J. Zhao, C. Paulmann, J. M. Engel, W. G. Marshall, M. Gospodinov, D. Petrova, and U. Bismayer, Phys. Rev. B 83, 134106 (2011).
4.O. Svitelskiy, J. Toulouse, G. Yong, and Z. G. Ye, Phys. Rev. B 68, 104107 (2003).
5.B. Mallesham, R. Ranjith, and M. Manivelraja, J. Appl. Phys. 116, 034104 (2014).
6.I. W. Chen, P. Li, and Y. Wang, J. Phys. Chem. Solids. 57, 1525 (1996).
7.C. A. Randall, A. S. Bhalla, T. R. Shrout, and L.E. Cross, J. Mater. Res. 5, 829 (1990).
8.G. Burns and F. H. Dacol, Ferroelectrics 104, 25 (1990).
9.B. P. Burton, E. Cockayne, and U. V. Waghmare, Phys. Rev. B 72, 064113 (2005).
10.M. Pasciak, T. R. Welberry, J. Kulda, M. Kempa, and J. Hlinka, Phys. Rev. B 85, 224109 (2012).
11.B. Mihailova, U. Bismayer, B. Guttler, M. Gospodinov, A. Boris, C. Berndhard, and M. Aroyo, Z. Kristallogr. 220, 740 (2005).
12.B. Guttler, B. Mihailova, R. Stosch, U. Bismayer, and M. Gospodinov, J. Mol. Struct. 661, 469 (2003).
13.D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).
14.G. A. Smolenskii, A. Agranovskaya, S. N. Popov, and V. A. Isupov, Sov. Phys. Tech. Phys. 28, 2152 (1958).
15.A. Kumar, R. S. Katiyar, C. Rinaldi, S. G. Lushnikov, and T. A. Shaplygina, Appl. Phys. Lett. 93, 232902 (2008).
16.O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, and J. M. Siqueiros, J. Appl. Phys. 97, 084107 (2005).
17.R. Blinc, P. Cevc, A. Zorko, J. Holc, M. Kosec, Z. Trontelj, J. Pirnat, N. Dalal, V. Ramachandran, and J. Krzystek, J. Appl. Phys. 101, 033901 (2007).
18.Y. Yang, J. M. Liu, H. B. Huang, W. Q. Zou, P. Bao, and Z. B. Liu, Phys. Rev. B. 70, 132101 (2004).
19.D. P. Kozlenko, S. E. Kichanov, E. V. Lukin, N. T. Dang, L. S. Dubrovinsky, H. P. Liermann, W. Morgenroth, A. A. Kamynin, S. A. Gridnev, and B. N. Savenko, Phys. Rev. B 89, 174107 (2014).
20.W. C. Lee, C. Y. Huang, L. K Tsao, and Y. C. Wu, J. Eur. Ceram. Soc. 29, 1443 (2009).
21.I. M. Reaney, E. L. Colla, and N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994).
22.M. R. Suchomel and P. K Davies, J. Appl. Phys. 96, 4405 (2004).
23.N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, J. Mater. Res 18, 2282 (2003).
24.R. D. Shannon, Acta Cryst.A. 32, 751 (1976).
25.P. G. Fernandez, J. A. Aramburu, M. T. Barriuso, and M. Moreno, J. Phy. Chem. Lett. 1, 647 (2010).
26.L. Farber, M. Valant, M. A. Akbas, and P. K. Davies, J. Am. Ceram. Soc. 85, 2319 (2002).
27.D. Liu and D. A. Payne, J. Appl. Phys. 77, 3361 (1995).
28.M. Correa, A. Kumar, S. Priya, R. S. Katiyar, and J. F Scott, Phys. Rev. B 83, 014302 (2011).
29.N. Waeselmann, B. Mihailova, B. J. Maier, C. Paulmann, G. Gospodinov, V. Marinova, and U. Bismayer, Phys. Rev. B 83, 214104 (2011).
30.D.K. Pradhan, S. Sahoo, S. K. Barik, V. S. Puli, P. Misra, and R. S. Katiyar, J. Appl. Phys. 115, 194105 (2014).
31.D. Rout, V. Subramanian, K. Hariharan, and V. Sivasubramanian, Solid State Commun. 141, 192 (2007).
32.M. Wojdyr, J. Appl. Cryst. 43, 1126 (2010).
33.Z. Y. Cheng, R. S. Katiyar, X. Yao, and A. Guo, Phys. Rev. B 55, 8165 (1997).
34.Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, J. Appl. Phys. 92, 2655 (2002).

Data & Media loading...


Article metrics loading...



Pb(FeScNb)O [(PFSN) (0 ≤ x ≤ 0.5)] multiferroic relaxors were synthesized and the temperature dependence of phonon modes across ferroelectric to paraelectric transition was studied. With varying Sc content from x = 0 to 0.25 the structure remains monoclinic and with further addition (x = 0.3 - 0.5) the structure transforms into rhombohedral symmetry. Structural refinement studies showed that the change in crystal structure from monoclinic to rhombohedral symmetry involves a volume increment of 34-36%. Associated changes in the tolerance factor (1.024 ≤ t ≤ 0.976) and bond angles were observed. Structure assisted B′-B″ cation ordering was confirmed through the superlattice reflections in selected area electron diffraction (SAED) pattern of Pb(ScNb)O (x = 0.5). Cation ordering is also evident from the evolution of Pb-O phonon mode in Raman spectra of compositions with rhombohedral symmetry (x ≥ 0.3). The high temperature Raman scattering studies show that the B-localized mode [F, ∼250 cm−1] and BO octahedral rotational mode [F, ∼200 cm−1], both originating from polar nano regions (PNRs) behave like coupled phonon modes in rhombohedral symmetry. However, in monoclinic symmetry they behave independently across the transition. Softening of B localized mode across the transition followed by the hardening for all compositions confirms the diffusive nature of the ferroelectric transformation. The presence of correlation between the B localized and BO rotational modes introduces a weak relaxor feature for systems with rhombohedral symmetry in PFSN ceramics, which was confirmed from the macroscopic dielectric studies.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd