Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Hortamani, L. Sandratskii, P. Kratzer, I. Mertig, and M. Scheffler, Phys. Rev. B 78, 104402 (2008).
2.S. Kahwaji, R.A. Gordon, E.D. Crozier, and T.L. Monchesky, Phys. Rev. B 85, 014405 (2012).
3.V.V. Rylkov, S.N. Nikolaev, K.Yu. Chernoglazov, B.A. Aronzon, K.I. Maslakov, V.V. Tugushev, E.T. Kulatov, I.A. Likhachev, E.M. Pashaev, A.S. Semisalova, N.S. Perov, A.B. Granovskii, E.A. Gan’shina, O.A. Novodvorskii, O.D. Khramova, E.V. Khaidukov, and V.Ya. Panchenko, JETP Lett. 96, 255 (2012).
4.V.V. Rylkov, E.A. Gan’shina, O.A. Novodvorskii, S.N. Nikolaev, A.I. Novikov, E.T. Kulatov, V.V. Tugushev, A.B. Granovskii, and V.Ya. Panchenko, Europhys. Lett. 103, 57014 (2013).
5.Y. Li, N. Kanazawa, X.Z. Yu, A. Tsukazaki, M. Kawasaki, M. Ichikawa, X.F. Jin, F. Kagawa, and Y. Tokura, Phys. Rev. Lett. 110, 117202 (2013);
5.T.L. Monchesky, J.C. Loudon, M.D. Robertson, and A.N. Bogdanov, Phys. Rev. Lett. 112, 059701 (2014).
6.S.A. Meynell, M.N. Wilson, J.C. Loudon, A. Spitzig, F.N. Rybakov, M.B. Johnson, and T.L. Monchesky, Phys. Rev. B 90, 224419 (2014).
7.A. Yang, K. Zhang, S. Yan, S. Kang, Y. Qin, J. Pei, L. He, H. Li, Y. Dai, S. Xiao, and Y. Tian, J. Alloys Comp. 623, 438 (2015).
8.T. Moriya, Fluctuations in Itinerant ElectronMagnetism (Springer-Verlag, Berlin, 1985).
9.S.M. Stishov and A.E. Petrova, Phys. Usp. 54, 1117 (2011).
10.A.E. Petrova, V.N. Krasnorussky, A.A. Shikov, W.M. Yuhasz, T.A. Lograsso, J.C. Lashley, and S.M. Stishov, Phys. Rev. B 82, 155124 (2010).
11.S. Kahwaji, R.A. Gordon, E.D. Crozier, S. Roorda, M.D. Robertson, J. Zhu, and T.L. Monchesky, Phys. Rev. B 88, 174419 (2013).
12.V.N. Men’shov, V.V. Tugushev, S. Caprara, and E.V. Chulkov, Phys. Rev. B 83, 035201 (2011).
13.V.V. Rylkov, A.S. Bugaev, O.A. Novodvorskii, V.V. Tugushev, E.T. Kulatov, A.V. Zenkevich, A.S. Semisalova, S.N. Nikolaev, A.S. Vedeneev, A.V. Shorokhov, D.V. Aver’yanov, K.Yu. Chernoglazov, E.A. Gan’shina, A.B. Granovsky, Y. Wang, V.Ya. Panchenko, and S. Zhou, J. Magn. Magn. Mater. 383, 39 (2015).
14.V.V. Rylkov, B.A. Aronzon, A.S. Lagutin, V.V. Podol’skii, V.P. Lesnikov, M. Goiran, J. Galibert, B. Raquet, and J. Léotin, J. Exp. Theor. Phys. 108, 149 (2009).
15.B.A. Aronzon, A.B. Granovskii, S.N. Nikolaev, D.Yu. Kovalev, N.S. Perov, and V.V. Rylkov, Phys. Solid State 46, 1482 (2004).
16.M. Walterfang, W. Keune, K. Trounov, and R. Peters, Phys. Rev. B 73, 214423 (2006).
17.Y.T. Zhang, Q. Jiang, D.J. Smith, and J. Drucker, J. Appl. Phys. 98, 033512 (2005).
18.S. Kahwaji, W. Bowman, M.D. Robertson, and T.L. Monchesky, J. Appl. Phys. 113, 063910 (2013).
19.M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nature Mater. 5, 653 (2006).
20.M. Lee, Y. Onose, Y. Tokura, and N.P. Ong, Phys. Rev. B 75, 172403 (2007).
21.N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, and N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
22.M. Lee, W. Kang, Y. Onose, Y. Tokura, and N.P. Ong, Phys. Rev. Lett. 102, 186601 (2009);
22.A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P.G. Niklowitz, and P. Boni, Phys. Rev. Lett. 102, 186602 (2009).
23.Jia-Hsien Yao, Hsiu-Hau Lin, Yun-Liang Soo, Tai-Sing Wu, Jai-Lin Tsai, Ming-Der Lan, and Tsung-Shune Chin, Appl. Phys. Lett. 100, 092404 (2012).
24.S.V. Demishev, V.V. Glushkov, I.I. Lobanova, M.A. Anisimov, V.Yu. Ivanov, T.V. Ishchenko, M.S. Karasev, N.A. Samarin, N.E. Sluchanko, V.M. Zimin, and A. V. Semeno, Phys. Rev. B 85, 045131 (2012);
24.S.V. Demishev, A.V. Semeno, A.V. Bogach, V.V. Glushkov, N.E. Sluchanko, N.A. Samarin, and A.L. Chernobrovkin, JETP Lett. 93, 213 (2011).
25.S. Okada, T. Shishido, Y. Ishizawa, M. Ogawa, K. Kudou, T. Fukuda, and T. Lundstrom, J. Alloys Comp. 317–318, 315 (2001).

Data & Media loading...


Article metrics loading...



The results of a comprehensive study of magnetic, magneto-transport and structural properties of nonstoichiometric MnSi ( ≈ 0.51-0.52) filmsgrown by the Pulsed Laser Deposition (PLD) technique onto AlO(0001) single crystal substrates at = 340°C are present. A highlight of used PLD method is the non-conventional (“shadow”) geometry with Kr as a scattering gas during the sample growth. It is found that the films exhibit high-temperature (HT) ferromagnetism (FM) with the Curie temperature ∼ 370 K accompanied by positive sign anomalous Hall effect (AHE); they also reveal the polycrystalline structure with unusual distribution of grains in size and shape. It is established that HT FM order is originated from the bottom interfacial self-organizing nanocrystalline layer. The upper layer adopted columnar structure with the lateral grain size ≥50 nm, possesses low temperature (LT) type of FM order with ≈ 46 K and contributes essentially to the magnetization at ≤ 50 K. Under these conditions, AHE changes its sign from positive to negative at ≤ 30K. We attribute observed properties to the synergy of distribution of MnSi crystallites in size and shape as well as peculiarities of defect-induced FM order in shadow geometry grown polycrystalline MnSi ( ∼ 0.5) films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd