Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
2.A. Sawa, Mater. Today 11, 28 (2008).
3.H. S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, Proc. IEEE 100, 1951 (2012).
4.K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006).
5.Y.-F. Chang, T.-C. Chang, and C.-Y. Chang, J. Appl. Phys. 110, 053703 (2011).
6.H.-D. Kim, M. J. Yun, and S. Kim, J. Alloy. Compd. 653, 534 (2015).
7.T. Yanagida, K. Nagashima, K. Oka, M. Kanai, A. Klamchuen, B. H. Park, and T. Kawai, Sci. Rep-UK. 3, 1657 (2013).
8.Y. Bai, H. Q. Wu, R. G. Wu, Y. Zhang, N. Deng, Z. P. Yu, and H. Qian, Sci. Rep-UK. 4, 5780 (2014).
9.K. Kim, K. Lee, K.-H. Lee, Y.-K. Park, and W. Y. Choi, J. Semicond. Tech. Sci. 14, 268 (2014).
10.Y.-L. Wu, C.-W. Liao, and J.-J. Ling, Appl. Phys. Lett. 104, 242906 (2014).
11.M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, Nat. Mater. 10, 625 (2011).
12.J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett. 10, 4105 (2010).
13.H.-D. Kim, F. Crupi, M. Lukosius, A. Trusch, C. Walczyk, and C. Wenger, J. Vac. Sci. Technol. B. 33, 05224 (2015).
14.L. Ji, Y.-F. Chang, B. Fowler, Y.-C. Chen, T.-M. Tsai, K.-C. Chang, M.-C. Chen, T.-C. Chang, S. M. Sze, E. T. Yu, and J. C. Lee, Nano Lett. 14, 813 (2014).
15.Y.-F. Chang, B. Fowler, Y.-C. Chen, Y.-T. Chen, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, J. Appl. Phys. 116, 043709 (2014).
16.S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, Appl. Phys. Lett. 106, 212106 (2015).
17.S. Kim, S. Cho, K.-C. Ryoo, and B.-G. Park, J. Vac. Sci. Technol. B. 33, 062201 (2015).
18.S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, Solid-State. Electronic. 114, 94 (2015).
19.S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, IEICE Trans. Electron. E98-C, 429 (2015).
20.H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, Phys. Status Solidi A 210, 1822 (2013).
21.X. Jiang, Z. Ma, H. Yang, J. Yu, W. Wang, W. Zhang, W. Li, J. Xu, L. Xu, K. Chen, X. Huang, and D. Feng, J. Appl. Phys. 116, 123705 (2014).
22.J. H. Park, H.-D. Kim, S. M. Hong, M. J. Yun, D. S. Jeon, and T. G. Kim, Phys. Status Solidi-R. 8, 239 (2014).
23.F. Rebib, E. Tomasella, M. Dubois, J. Cellier, T. Sauvage, and M. Jacquet, Surf. Coat. Technol. 200, 330 (2005).
24.V. A. Gritsenko, R. W. M. Kwok, H. Wong, and J. B. Wu, Non-Cryst. Solids. 297, 96 (2002).
25.E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nat. Mat. 9, 403 (2010).
26.H. W. Ahn, D. S. Jeong, B. K. Cheong, S. D. Kim, S. Y. Shin, H. Lim, D. Kim, and S. Lee, Electrochem Solid-State Lett. 2, N31 (2013).
27.M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett. 32, 1579 (2011).
28.R. S. Shenoy, K. Gopalakrishnan, B. Jackson, K. Virwani, G. W. Burr, C. T. Rettner, A. Padilla, D. S. Bethune, R. M. Shelby, and A. J. Kellock, VLSI Technol. Symp. 2011, 9495.
29.X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, IEEE Electron Device Lett. 33, 1402 (2012).
30.S. H. Jo and W. Lu, Nano Lett. 8, 392 (2008).
31.J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett. 10, 4105 (2010).
32.H. Lv, Y. Li, Q. Liu, S. Long, L. Li, and M. Liu, IEEE Electron Device Lett. 34, 229 (2013).
33.X. A. Tran, B. Gao, J. F. Kang, X. Wu, L. Wu, Z. Fang, Z. R. Wang, K. L. Pey, Y. C. Yeo, A. Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, in IEEE International Electron Devices Meeting (IEDM) (2011), p. 31.2.1.
34.S. Gao, F. Zeng, F. Li, M. Wang, H. Mao, G. Wang, C. Song, and F. Pan, Nanoscale 7, 6031 (2015).
35.H.-D. Kim, M. J. Yun, S. M. Hong, and T. G. Kim, Nanotechnology. 25, 125201 (2014).
36.H.-D. Kim, H.-M. An, S. M. Hong, J. H. Park, D. S. Jeon, and T. G. Kim, Microelectron. Eng. 126, 169 (2014).
37.D. F. Downey and J. W. Chow, Appl. Phys. Lett. 73, 1263 (1998).
38.D. Ielmini, R. Bruchhaus, and R. Waser, Phase Transitions 84, 570 (2011).

Data & Media loading...


Article metrics loading...



In this letter, we report unique unipolar resistive switching memory behaviors in the Ni/SiN/-Si structure by controlling the impurity concentration of Si bottom electrode. It is found that we can decrease the reset current drastically by reducing dopant concentration by reducing dopant concentration, which helps low-power operation in the high density resistive switching memory array. Also, the samples with high impurity concentration exhibited ohmic conduction in the low-resistance state (LRS) while those with low dopant concentration below 1018 cm−3 showed a remarkable self-rectifying behavior. The nonlinear metal-insulator-semiconductor(MIS) diode characteristics in the samples with low doping concentration (∼1018 cm−3) are explained by the formation of Schottky barrier at the metal and semiconductor interface. As a result, we demonstrate high rectification ratio (>105) between forward and reverse currents along with the robust nonvolatile properties including endurance cycles and retention from the devices with large self-rectification ratio. The high self-rectifying characteristics of SiN-based RRAM cell would be one of the most virtuous merits in the high-density crossbar array.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd