Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/1/10.1063/1.4941364
1.
1.R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
2.
2.A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
3.
3.H. S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, Proc. IEEE 100, 1951 (2012).
http://dx.doi.org/10.1109/JPROC.2012.2190369
4.
4.K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006).
http://dx.doi.org/10.1063/1.2339032
5.
5.Y.-F. Chang, T.-C. Chang, and C.-Y. Chang, J. Appl. Phys. 110, 053703 (2011).
http://dx.doi.org/10.1063/1.3630119
6.
6.H.-D. Kim, M. J. Yun, and S. Kim, J. Alloy. Compd. 653, 534 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.09.076
7.
7.T. Yanagida, K. Nagashima, K. Oka, M. Kanai, A. Klamchuen, B. H. Park, and T. Kawai, Sci. Rep-UK. 3, 1657 (2013).
8.
8.Y. Bai, H. Q. Wu, R. G. Wu, Y. Zhang, N. Deng, Z. P. Yu, and H. Qian, Sci. Rep-UK. 4, 5780 (2014).
9.
9.K. Kim, K. Lee, K.-H. Lee, Y.-K. Park, and W. Y. Choi, J. Semicond. Tech. Sci. 14, 268 (2014).
http://dx.doi.org/10.5573/JSTS.2014.14.3.268
10.
10.Y.-L. Wu, C.-W. Liao, and J.-J. Ling, Appl. Phys. Lett. 104, 242906 (2014).
http://dx.doi.org/10.1063/1.4884389
11.
11.M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, Nat. Mater. 10, 625 (2011).
http://dx.doi.org/10.1038/nmat3070
12.
12.J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett. 10, 4105 (2010).
http://dx.doi.org/10.1021/nl102255r
13.
13.H.-D. Kim, F. Crupi, M. Lukosius, A. Trusch, C. Walczyk, and C. Wenger, J. Vac. Sci. Technol. B. 33, 05224 (2015).
14.
14.L. Ji, Y.-F. Chang, B. Fowler, Y.-C. Chen, T.-M. Tsai, K.-C. Chang, M.-C. Chen, T.-C. Chang, S. M. Sze, E. T. Yu, and J. C. Lee, Nano Lett. 14, 813 (2014).
http://dx.doi.org/10.1021/nl404160u
15.
15.Y.-F. Chang, B. Fowler, Y.-C. Chen, Y.-T. Chen, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, J. Appl. Phys. 116, 043709 (2014).
http://dx.doi.org/10.1063/1.4891244
16.
16.S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, Appl. Phys. Lett. 106, 212106 (2015).
http://dx.doi.org/10.1063/1.4921926
17.
17.S. Kim, S. Cho, K.-C. Ryoo, and B.-G. Park, J. Vac. Sci. Technol. B. 33, 062201 (2015).
http://dx.doi.org/10.1116/1.4931946
18.
18.S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, Solid-State. Electronic. 114, 94 (2015).
http://dx.doi.org/10.1016/j.sse.2015.08.003
19.
19.S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, IEICE Trans. Electron. E98-C, 429 (2015).
http://dx.doi.org/10.1587/transele.E98.C.429
20.
20.H.-D. Kim, H.-M. An, S. M. Hong, and T. G. Kim, Phys. Status Solidi A 210, 1822 (2013).
21.
21.X. Jiang, Z. Ma, H. Yang, J. Yu, W. Wang, W. Zhang, W. Li, J. Xu, L. Xu, K. Chen, X. Huang, and D. Feng, J. Appl. Phys. 116, 123705 (2014).
http://dx.doi.org/10.1063/1.4896552
22.
22.J. H. Park, H.-D. Kim, S. M. Hong, M. J. Yun, D. S. Jeon, and T. G. Kim, Phys. Status Solidi-R. 8, 239 (2014).
http://dx.doi.org/10.1002/pssr.201308309
23.
23.F. Rebib, E. Tomasella, M. Dubois, J. Cellier, T. Sauvage, and M. Jacquet, Surf. Coat. Technol. 200, 330 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2005.02.088
24.
24.V. A. Gritsenko, R. W. M. Kwok, H. Wong, and J. B. Wu, Non-Cryst. Solids. 297, 96 (2002).
http://dx.doi.org/10.1016/S0022-3093(01)00910-3
25.
25.E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nat. Mat. 9, 403 (2010).
http://dx.doi.org/10.1038/nmat2748
26.
26.H. W. Ahn, D. S. Jeong, B. K. Cheong, S. D. Kim, S. Y. Shin, H. Lim, D. Kim, and S. Lee, Electrochem Solid-State Lett. 2, N31 (2013).
http://dx.doi.org/10.1149/2.011309ssl
27.
27.M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, IEEE Electron Device Lett. 32, 1579 (2011).
http://dx.doi.org/10.1109/LED.2011.2163697
28.
28.R. S. Shenoy, K. Gopalakrishnan, B. Jackson, K. Virwani, G. W. Burr, C. T. Rettner, A. Padilla, D. S. Bethune, R. M. Shelby, and A. J. Kellock, VLSI Technol. Symp. 2011, 9495.
29.
29.X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, IEEE Electron Device Lett. 33, 1402 (2012).
http://dx.doi.org/10.1109/LED.2012.2210855
30.
30.S. H. Jo and W. Lu, Nano Lett. 8, 392 (2008).
http://dx.doi.org/10.1021/nl073225h
31.
31.J. Yao, Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett. 10, 4105 (2010).
http://dx.doi.org/10.1021/nl102255r
32.
32.H. Lv, Y. Li, Q. Liu, S. Long, L. Li, and M. Liu, IEEE Electron Device Lett. 34, 229 (2013).
http://dx.doi.org/10.1109/LED.2012.2232640
33.
33.X. A. Tran, B. Gao, J. F. Kang, X. Wu, L. Wu, Z. Fang, Z. R. Wang, K. L. Pey, Y. C. Yeo, A. Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, in IEEE International Electron Devices Meeting (IEDM) (2011), p. 31.2.1.
34.
34.S. Gao, F. Zeng, F. Li, M. Wang, H. Mao, G. Wang, C. Song, and F. Pan, Nanoscale 7, 6031 (2015).
http://dx.doi.org/10.1039/C4NR06406B
35.
35.H.-D. Kim, M. J. Yun, S. M. Hong, and T. G. Kim, Nanotechnology. 25, 125201 (2014).
http://dx.doi.org/10.1088/0957-4484/25/12/125201
36.
36.H.-D. Kim, H.-M. An, S. M. Hong, J. H. Park, D. S. Jeon, and T. G. Kim, Microelectron. Eng. 126, 169 (2014).
http://dx.doi.org/10.1016/j.mee.2014.07.018
37.
37.D. F. Downey and J. W. Chow, Appl. Phys. Lett. 73, 1263 (1998).
http://dx.doi.org/10.1063/1.122146
38.
38.D. Ielmini, R. Bruchhaus, and R. Waser, Phase Transitions 84, 570 (2011).
http://dx.doi.org/10.1080/01411594.2011.561478
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/1/10.1063/1.4941364
Loading
/content/aip/journal/adva/6/1/10.1063/1.4941364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/1/10.1063/1.4941364
2016-01-29
2016-10-01

Abstract

In this letter, we report unique unipolar resistive switching memory behaviors in the Ni/SiN/-Si structure by controlling the impurity concentration of Si bottom electrode. It is found that we can decrease the reset current drastically by reducing dopant concentration by reducing dopant concentration, which helps low-power operation in the high density resistive switching memory array. Also, the samples with high impurity concentration exhibited ohmic conduction in the low-resistance state (LRS) while those with low dopant concentration below 1018 cm−3 showed a remarkable self-rectifying behavior. The nonlinear metal-insulator-semiconductor(MIS) diode characteristics in the samples with low doping concentration (∼1018 cm−3) are explained by the formation of Schottky barrier at the metal and semiconductor interface. As a result, we demonstrate high rectification ratio (>105) between forward and reverse currents along with the robust nonvolatile properties including endurance cycles and retention from the devices with large self-rectification ratio. The high self-rectifying characteristics of SiN-based RRAM cell would be one of the most virtuous merits in the high-density crossbar array.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/1/1.4941364.html;jsessionid=4riI7A-hJRtLYdZ9C6zOPysj.x-aip-live-03?itemId=/content/aip/journal/adva/6/1/10.1063/1.4941364&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/1/10.1063/1.4941364&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/1/10.1063/1.4941364'
Right1,Right2,Right3,