Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Blasius, “Grenzschichten in Flüssigkeiten mit kleiner Reibung,” Z. Angew. Math. Phys. 56, 137 (1908).
S. Goldstein, “Some 2-dimensional diffusion problems with circular symmetry,” Proc. London Math. Soc. series (2) 34, 5188 (1932).
S. Goldstein and L. Rosenhead, “Boundary layer growth,” Proc. Camb. Phil. Soc. 32(3), 392401 (1936).
H. Görtler, “Verdrangungsuirkung der laminaren Grenzschicht und Pruckuiderstand,” Ing. Arch 14, 286305 (1944).
H. Görtler, “Grengschichtentstehung and Zylindern bei Anfahri aus der Ruhe,” Arch.d.Math 1, 138147 (1948).
W. M. Collins and S. C. R. Dennis, “Symmetrical flow past a uniformly accelerated circular cylinder,” J. Fluid Mech. 65(3), 461480 (1974).
S. Tameda, Recent research on unsteady boundary layers (Laval University Press, Quebec, 1972), p. 1165.
J. Ackeret, Das Rotorschiff und Seine Physikalischen Grundlagen (Vandenhoeck und Ruprecht, Göttingen, 1925).
L. Prandtl, “The Magnus effect and windpowered ships,” Naturwissenschafen 13, 93108 (1925).
L. Prandtl and O. G. A. Tietjens, Applied Hydro-and Aero-mechanics (McGraw Hill Publ., New York, 1934).
J. S. Tennant, W. S. Johnson, and A. Krothapalli, “Rotating cylinder for circulation control on an airfoil,” J. Hydronaut 10, 102105 (1976).
D. W. Moore, “The flow past a rapidly rotating circular cylinder in an infinite stream,” J. Fluid Mech. 2, 541550 (1957).
N. Riley, “Unsteady laminar boundary layer,” SIAM Rev. 17, 274297 (1975).
J. S. Tennant, “A subsonic diffuser with moving walls for boundary-layer control,” AIAA J. 11, 240242 (1973).
J. D. A. Walker, “The boundary layer due to rectilinear vortex,” Proc. R. Soc. London Ser. A 359, 167188 (1978).
D. R. Cichy, J. W. Harris, and J. K. MacKay, (1972). Flight tests of a rotating cylinder flap on North American Rockwell YOV-10 aircraft, NASA–CR–2135.
A. C. Eringen, “Theory of micropolar fluids,” J. Math. Mech. 16, 118 (1966).
A. C. Eringen, “Simple microfluids,” Int. J. Engg. Sci. 2(2), 205217 (1964).
J. C. Misra and S. K. Ghosh, “A mathematical model for the study of interstitial fluid movement vis-a-vis the non-Newtonian behaviour of blood in a constricted artery,” Compu. Math. Appl. 41, 783811 (2001).
M. A. Turk, N. D. Sylvester, and T. Ariman, “On pulsatile blood flow,” Journal of Rheology 17, 121 (1973).
I. Papautsky, J. Brazzle, T. Ameel, and A. B. Frazier, “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuators A 73, 101108 (1999).
M. Giamberini, E. Amendola, and C. Carfagna, “Lightly crosslinked liquid crystalline epoxy resins: the effect of rigid-rod length and applied stress on the state of order of the cured thermoset,” Macromolecular Chemistry and Physics 198, 31853196 (1997).
A. C. Eringen, Microcontinuum Field Theories, 2, Fluent Media (Springer, New York, 2001).
D. J. Harrison, A. Manz, and P. G. Glavina (1991). Electroosmotic pumping within a chemical sensor system integrated on silicon. Proceedings of the International Conference on Solid-States Sensors and Actuators (Transducers’ 91), Digest of Technical Papers, San Francisco, 792795.
J. C. T. Eijkel and A. van den Berg, “The promise of nanotechnology for separation devices—From a top-down approach to nature-inspired separation devices,” Electrophoresis 27, 677685 (2006).
S. C. Cowin and C. J. Pennington, “On the steady rotational motion of polar fluids,” Rheol. Acta. 9, 307312 (1970).
S. C. Cowin, “The theory of polar fluids,” Adv. Appl.Mech. 14, 279347 (1974).
H. A. Hogen and M. Henriksen, “An elevation of a micropolar model for blood flow through an idealized stenosis,” J. Biomechanics 22, 211218 (1989).
M. A. Kamal and A. A. Siddiqui, “Micropolar fluid flow due to rotating and oscillating circular cylinder: 6th order numerical study,” ZAMM 84(2), 96113 (2004).
M. T. Kamel, “Flow of a polar fluid between two eccentric rotating cylinders,” J. Rheol. 29, 3748 (1985).
S. Kang, H. Choi, and S. Lee, “Laminar flow past a rotating circular cylinder,” Phy. Fluids 11, 33123321 (1999).
T. Cebeci, “The laminar boundary layer on a circular cylinder started impulsively from rest,” J. Comp. Phys 31, 153172 (1979).
S. C. R. Dennis, “Finite differences associated with second-order differential equations,” J. Mech. Appl. Math. 13, 487507 (1960).
F. B. Hildebrand, Introduction to Numerical Analysis (Tata McGraw Hill Publishing Co. Ltd., 1978).
M. K. Jain, Numerical methods for scientific and engineering computations (New Age International (P) Limited, New Delhi, 1997).

Data & Media loading...


Article metrics loading...



In this paper, we formulated the non-steady flow due to the uniformly accelerated and rotating circular cylinder from rest in a stationary, viscous, incompressible and micropolar fluid. This flow problem is examined numerically by adopting a special scheme comprising the Adams-Bashforth Temporal Fourier Series method and the Runge-Kutta Temporal Special Finite-Difference method. This numerical scheme transforms the governing equation into a system of finite-difference equations. This system was further solved numerically by point successive-over-relaxation method. These results were also further extrapolated by the Richardson extrapolation method. This scheme is valid for all values of the flow and fluid-parameters and for all time. Moreover the boundary conditions of the vorticity and the spin at points far from the cylinder are being imposed and encountered too. The results are compared with existing results (for non-rotating circular cylinder in Newtonian fluids). The comparison is good. The enhancement of lift and reduction in drag is observed if the micropolarity effects are intensified. Same is happened if the rotation of a cylinder increases. Furthermore, the vortex-pair in the wake is delayed to successively higher times as rotation parameter increases. In addition, the rotation helps not only in dissolving vortices adjacent to the cylinder and adverse pressure region but also in dissolving the boundary layer separation. Furthermore, the rotation reduces the micropolar spin boundary layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd