Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/10/10.1063/1.4964495
1.
F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
http://dx.doi.org/10.1103/PhysRevLett.3.34
2.
Y. Gao, H. Luo, Z. Zhang, L. Kang, Z. Chen, J. Du, M. Kanehira, and C. Cao, Nano Energy 1, 221 (2012).
http://dx.doi.org/10.1016/j.nanoen.2011.12.002
3.
N. A. Charipar, H. Kim, S. A. Mathews, and A. Pique, AIP Adv. 6, 015113 (2016).
http://dx.doi.org/10.1063/1.4941042
4.
B. Rajeswaran and A. M. Umarji, AIP Adv. 6, 035215 (2016).
http://dx.doi.org/10.1063/1.4944855
5.
M. M. Yang, Y. J. Yang, B. Hong, H. L. Huang, S. X. Hu, Y. Q. Dong, H. B. Wang, H. He, J. Y. Zhao, X. G. Liu, Z. L. Luo, X. G. Li, H. B. Zhang, and C. Gao, AIP Adv. 5, 037114 (2015).
http://dx.doi.org/10.1063/1.4914915
6.
F. H. Chen, L. L. Fan, S. Chen, G. M. Liao, Y. L. Chen, P. Wu, L. Song, C. W. Zou, and Z. Y. Wu, ACS Appl. Mater. Inter. 7, 6875 (2015).
http://dx.doi.org/10.1021/acsami.5b00540
7.
H. Kim, N. Charipar, M. Osofsky, S. B. Qadri, and A. Pique, Appl. Phys. Lett. 104, 081913 (2014).
http://dx.doi.org/10.1063/1.4866806
8.
J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. P. Parkin, Science 339, 1402 (2013).
http://dx.doi.org/10.1126/science.1230512
9.
Y. Sun, S. Jiang, W. Bi, R. Long, X. Tan, C. Wu, S. Wei, and Y. Xie, Nanoscale 3, 4394 (2011).
http://dx.doi.org/10.1039/c1nr10976f
10.
Q. Yu, W. Li, J. Liang, Z. Duan, Z. Hu, J. Liu, H. Chen, and J. Chu, J. Phys. D Appl. Phys. 46, 055310 (2013).
http://dx.doi.org/10.1088/0022-3727/46/5/055310
11.
C. Chen, Y. Zhao, X. Pan, V. Kuryatkov, A. Bernussi, M. Holtz, and Z. Fan, J. Appl. Phys. 110, 023707 (2011).
http://dx.doi.org/10.1063/1.3609084
12.
H. T. Yuan, K. C. Feng, X. J. Wang, C. Li, C. J. He, and Y. X. Nie, Chin. Phys. 13, 82 (2004).
http://dx.doi.org/10.1088/1009-1963/13/1/015
13.
X. Xiang, G. Zhang, X. Wang, T. Tang, and Y. Shi, Phys. Chem. Chem. Phys. 17, 29134 (2015).
http://dx.doi.org/10.1039/C5CP04867B
14.
G. D. Samolyuk and Y. N. Osetsky, J. Phys.: Condens. Matter 27, 305001 (2015).
http://dx.doi.org/10.1088/0953-8984/27/30/305001
15.
T. Zacherle, P. C. Schmidt, and M. Martin, Phys. Rev. B 87, 235206 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.235206
16.
J. L. Zhao, W. Q. Zhang, X. M. Li, J. W. Feng, and X. Shi, J. Phys.: Condens. Matter 18, 1495 (2006).
http://dx.doi.org/10.1088/0953-8984/18/5/002
17.
X. Yuan, Y. Zhang, T. A. Abtew, P. Zhang, and W. Zhang, Phys. Rev. B 86, 235103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235103
18.
R. Sakuma, T. Miyake, and F. Aryasetiawan, Phys. Rev. B 78, 075106 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.075106
19.
M. S. Laad, L. Craco, and E. Mueller-Hartmann, Phys. Rev. B 73, 195120 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.195120
20.
V. Eyert, Phys. Rev. Lett. 107, 016401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.016401
21.
Z. Zhu and U. Schwingenschloegl, Phys. Rev. B 86, 075149 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075149
22.
M. Gatti, F. Bruneval, V. Olevano, and L. Reining, Phys. Rev. Lett. 99, 266402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.266402
23.
C. Sun, L. Yan, B. Yue, H. Liu, and Y. Gao, J. Mater. Chem. C 2, 9283 (2014).
http://dx.doi.org/10.1039/C4TC00778F
24.
R. J. D. Tilley, Defects in solids (Wiley, New Jersey, 2008).
25.
A. Liebsch, H. Ishida, and G. Bihlmayer, Phys. Rev. B 71, 0851098 (2005).
26.
R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 72, 3389 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.3389
27.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
28.
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
29.
P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
30.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
31.
T. M. Rice, H. Launois, J. P. Pouget, R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, Phys. Rev. Lett. 73, 3042 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.3042
32.
T. J. Huffman, P. Xu, M. M. Qazilbash, E. J. Walter, H. Krakauer, J. Wei, D. H. Cobden, H. A. Bechtel, M. C. Martin, G. L. Carr, and D. N. Basov, Phys. Rev. B 87, 115121 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115121
33.
S. Kim, K. Kim, C. Kang, and B. I. Min, Phys. Rev. B 87, 195106 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195106
34.
J. Zhang, H. He, Y. Xie, and B. Pan, J. Chem. Phys. 138, 114705 (2013).
http://dx.doi.org/10.1063/1.4795431
35.
J. Zhang, H. He, Y. Xie, and B. Pan, Phys. Chem. Chem. Phys. 15, 4687 (2013).
http://dx.doi.org/10.1039/c3cp44476g
36.
C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
37.
A. Zylbersztejn, B. Pannetier, and P. Merenda, Phys. Lett. A 54, 145 (1975).
http://dx.doi.org/10.1016/0375-9601(75)90842-7
38.
B. Liu, H. Xiao, Y. Zhang, D. S. Aidhy, and W. J. Weber, Comput. Mater. Sci. 92, 22 (2014).
http://dx.doi.org/10.1016/j.commatsci.2014.05.017
39.
K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 68, 085110 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085110
40.
S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2339
41.
B. Liu, V. R. Cooper, H. Xu, H. Xiao, Y. Zhang, and W. J. Weber, Phys. Chem. Chem. Phys. 16, 15590 (2014).
http://dx.doi.org/10.1039/c4cp01510j
42.
S. Chen, L. Dai, J. Liu, Y. Gao, X. Liu, Z. Chen, J. Zhou, C. Cao, P. Han, H. Luo, and M. Kanahira, Phys. Chem. Chem. Phys. 15, 17537 (2013).
http://dx.doi.org/10.1039/c3cp52009a
43.
K. D. Rogers, Powder Diffr. 8, 240 (1993).
http://dx.doi.org/10.1017/S0885715600019448
44.
S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, Phys. Rev. Lett. 94, 026404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.026404
45.
J. B. Goodenough, J. Solid State Chem. 3, 490 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
46.
T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schuessler-Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H. J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 116402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.116402
47.
A. S. Belozerov, M. A. Korotin, V. I. Anisimov, and A. I. Poteryaev, Phys. Rev. B 85, 045109 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045109
48.
K. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, and R. F. Haglund, Jr., Nano Lett. 12, 780 (2012).
http://dx.doi.org/10.1021/nl203782y
49.
T. A. Mellan and R. Grau-Crespo, J. Chem. Phys. 137, 154706 (2012).
http://dx.doi.org/10.1063/1.4758319
50.
S. Fan, L. Fan, Q. Li, J. Liu, and B. Ye, Appl. Surf. Sci. 321, 464 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.10.057
51.
C. Chen and Z. Fan, Appl. Phys. Lett. 95, 262106 (2009).
http://dx.doi.org/10.1063/1.3280375
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/10/10.1063/1.4964495
Loading
/content/aip/journal/adva/6/10/10.1063/1.4964495
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/10/10.1063/1.4964495
2016-10-03
2016-12-10

Abstract

VO is an attractive candidate for intelligent windows and thermal sensors. There are challenges for developing VO-based devices, since the properties of monoclinic VO are very sensitive to its intrinsic point defects. In this work, the formation energies of the intrinsic point defects in monoclinic VO were studied through the first-principles calculations. Vacancies, interstitials, as well as antisites at various charge states were taken into consideration, and the finite-size supercell correction scheme was adopted as the charge correction scheme. Our calculation results show that the oxygen interstitial and oxygen vacancy are the most abundant intrinsic defects in the oxygen rich and oxygen deficient condition, respectively, indicating a consistency with the experimental results. The calculation results suggest that the oxygen interstitial or oxygen vacancy is correlated with the charge localization, which can introduce holes or electrons as free carriers and subsequently narrow the band gap of monoclinic VO. These calculations and interpretations concerning the intrinsic point defects would be helpful for developing VO-based devices through defect modifications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/10/1.4964495.html;jsessionid=kW2ewVa_j0n3zhjunoh-XBKR.x-aip-live-03?itemId=/content/aip/journal/adva/6/10/10.1063/1.4964495&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/10/10.1063/1.4964495&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/10/10.1063/1.4964495'
Right1,Right2,Right3,