Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/10/10.1063/1.4964925
1.
J. Brodrick, “Energy savings forecast of solid-state lighting in general illumination applications,” Tech. Rep. (US Dep. Energy, Washington, DC, 2014).
2.
S. Nakamura and M. R. Krames, “History of gallium–nitride-based light-emitting diodes for illumination,” Proc. IEEE 101, 22112220 (2013).
http://dx.doi.org/10.1109/JPROC.2013.2274929
3.
L. Y. Kuritzky and J. S. Speck, “Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN,” MRS Commun. 5, 463473 (2015).
http://dx.doi.org/10.1557/mrc.2015.53
4.
K. A. Denault, M. Cantore, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Adv. 3, 072107 (2013).
http://dx.doi.org/10.1063/1.4813837
5.
Q.-Q. Zhu, X.-J. Wang, L. Wang, N. Hirosaki, T. Nishimura, Z.-F. Tian, Q. Li, Y.-Z. Xu, X. Xu, and R.-J. Xie, “β-sialon:Eu phosphor-in-glass: A robust green color converter for high power blue laser lighting,” J. Mater. Chem. C 3, 1076110766 (2015).
http://dx.doi.org/10.1039/C5TC02236C
6.
M. Cantore, N. Pfaff, R. M. Farrell, J. S. Speck, S. Nakamura, and S. P. DenBaars, “High luminous flux from single crystal phosphor-converted laser-based white lighting system,” Opt. Express 24, A215A221 (2016).
http://dx.doi.org/10.1364/OE.24.00A215
7.
N. C. George, K. A. Denault, and R. Seshadri, “Phosphors for Solid-State White Lighting,” Annu. Rev. Mater. Res. 43, 481501 (2013).
http://dx.doi.org/10.1146/annurev-matsci-073012-125702
8.
J. Sheu, S. Chang, C. Kuo, Y. Su, L. Wu, Y. Lin, W. Lai, J. Tsai, G. Chi, and R. Wu, “White-Light Emission from Near UV InGaN-GaN LED Chip Precoated with Blue/Green/Red Phosphors,” IEEE Photon. Technol. Lett. 15, 1820 (2003).
http://dx.doi.org/10.1109/LPT.2002.805852
9.
C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication,” Opt. Express 23, 1623216237 (2015).
http://dx.doi.org/10.1364/OE.23.016232
10.
C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, “2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system,” Opt. Express 23, 2977929787 (2015).
http://dx.doi.org/10.1364/OE.23.029779
11.
X. Luo, X. Fu, F. Chen, and H. Zheng, “Phosphor self-heating in phosphor converted light emitting diode packaging,” International Journal of Heat and Mass Transfer 58, 276281 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.056
12.
A. Birkel, K. A. Denault, N. C. George, C. E. Doll, B. Hery, A. A. Mikhailovsky, C. S. Birkel, B.-C. Hong, and R. Seshadri, “Rapid microwave preparation of highly efficient Ce3+-substituted garnet phosphors for solid state white lighting,” Chem. Mater. 24, 11981204 (2012).
http://dx.doi.org/10.1021/cm3000238
13.
Y.-I. Kim, K.-B. Kim, M.-J. Jung, and J.-S. Hong, “Combined rietveld refinement of BaMgAl10O17:Eu2+ using X-ray and neutron powder diffraction data,” J. Lumin. 99, 91100 (2002).
http://dx.doi.org/10.1016/S0022-2313(02)00319-8
14.
K.-B. Kim, Y.-I. Kim, H.-G. Chun, T.-Y. Cho, J.-S. Jung, and J.-G. Kang, “Structural and optical properties of BaMgAl10O17:Eu2+ phosphor,” Chem. Mater. 14, 50455052 (2002).
http://dx.doi.org/10.1021/cm020592f
15.
K. Momma and F. Izumi, “VESTA: a Three-Dimensional Visualization System for Electronic and Structural Analysis,” J. Appl. Crystallogr. 41, 653658 (2008).
http://dx.doi.org/10.1107/S0021889808012016
16.
A. C. Larson and R. B. Von Dreele, “GSAS,” General Structure Analysis System. LANSCE, MS-H805, Los Alamos, New Mexico (1994).
17.
B. H. Toby, “EXPGUI, a Graphical User Interface for GSAS,” J. Appl. Crystallogr. 34, 210213 (2001).
http://dx.doi.org/10.1107/S0021889801002242
18.
J. Garay, “Current-activated, pressure-assisted densification of materials,” Annu. Rev. Mater. Res. 40, 445468 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104433
19.
R. Chaim, R. Marder-Jaeckel, and J. Shen, “Transparent YAG ceramics by surface softening of nanoparticles in spark plasma sintering,” Mat. Sci. Eng. A-Struct. 429, 7478 (2006).
http://dx.doi.org/10.1016/j.msea.2006.04.072
20.
R. Chaim, M. Kalina, and J. Z. Shen, “Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering,” J. Eur. Ceram. Soc. 27, 33313337 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2007.02.193
21.
N. Frage, S. Kalabukhov, N. Sverdlov, V. Ezersky, and M. P. Dariel, “Densification of transparent yttrium aluminum garnet (YAG) by SPS processing,” J. Eur. Ceram. Soc. 30, 33313337 (2010).
http://dx.doi.org/10.1016/j.jeurceramsoc.2010.08.006
22.
R. T. Marta Suárez, A. Fernández, and J. L. Menendez, Sintering to Transparency of Polycrystalline Ceramic Materials (InTech Open Access Publisher, 2012).
23.
J. C. de Mello, H. F. Wittmann, and R. H. Friend, “An improved experimental determination of external photoluminescence quantum efficiency,” Adv. Mater. 9, 230232 (1997).
http://dx.doi.org/10.1002/adma.19970090308
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/10/10.1063/1.4964925
Loading
/content/aip/journal/adva/6/10/10.1063/1.4964925
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/10/10.1063/1.4964925
2016-10-11
2016-12-10

Abstract

With high power light emitting diodes and laser diodes being explored for white light generation and visible light communication, thermally robust encapsulation schemes for color-converting inorganic phosphors are essential. In the current work, the canonical blue-emitting phosphor, high purity Eu-doped BaMgAlO, has been prepared using microwave-assisted heating (25 min) and densified into translucent ceramic phosphor monoliths using spark plasma sintering (30 min). The resulting translucent ceramic monoliths convert UV laser light to blue light with the same efficiency as the starting powder and provide superior thermal management in comparison with silicone encapsulation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/10/1.4964925.html;jsessionid=ziMYKetXIChOXiug_0j2cq23.x-aip-live-02?itemId=/content/aip/journal/adva/6/10/10.1063/1.4964925&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/10/10.1063/1.4964925&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/10/10.1063/1.4964925'
Right1,Right2,Right3,