Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/10/10.1063/1.4964931
1.
R. S. Popovic, Hall Effect Devices, 2nd ed. (Institute of Physics, Bristol, 2003).
2.
A. B. Pippard, Magnetoresistance in Metals (Cambridge University Press, Cambridge, 1989).
3.
A. C. Beer, Galvanomagnetic Effects in Semiconductors (Academic Press, New York, 1963).
4.
P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, London, 1992).
5.
H. Kronmüller and S. Parkin (eds.), Handbook of Magnetism and Magnetic Materials, Vol. 5: Spintronics and Magnetoelectronics (John Wiley & Sons, 2007).
6.
S. S. P. Parkin, Annu. Rev. Mater. Sci. 25, 357 (1995).
http://dx.doi.org/10.1146/annurev.ms.25.080195.002041
7.
E. Y. Tsymbal and D. G. Pettifor, Solid State Phys. 56, 113 (2001).
http://dx.doi.org/10.1016/S0081-1947(01)80019-9
8.
E. L. Nagaev, Phys. Rep. 346, 387 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00111-3
9.
K. Matsushira, M. Tokunaga, M. Wakeshima, Y. Hinatsu, and S. Takagi, J. Phys. Soc. Jap. 82, 023706 (2013).
http://dx.doi.org/10.7566/jpsj.82.023706
10.
S. Jin, T. H. Tiefel, M. McCormag, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
http://dx.doi.org/10.1126/science.264.5157.413
11.
X. L. Wang, Q. Shao, A. Zhuravlyova, M. He, Y. Yi, R. Lortz, J. N. Wang, and A. Ruotolo, Sci. Rep. 5, 9221 (2015).
http://dx.doi.org/10.1038/srep09221
12.
L. Ioffe and B. Spivak, J. Exp. Theor. Phys. 117, 551 (2013).
http://dx.doi.org/10.1134/S1063776113110101
13.
Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang, S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Phys. Rev. X 5, 031037 (2015).
http://dx.doi.org/10.1103/physrevx.5.031037
14.
Y. Zhao, H. Liu, J. Yan, W. An, J. Liu, X. Zhang, H. Wang, Y. Liu, H. Jiang, Q. Li, Y. Wang, X.-Z. Li, D. Mandrus, X. C. Xie, M. Pan, and J. Wang, Phys. Rev. B 92, 041104(R) (2015).
http://dx.doi.org/10.1103/physrevb.92.041104
15.
H. Wang, C.-K. Li, H. Liu, J. Yan, J. Wang, J. Liu, Z. Lin, Y. Li, Y. Wang, L. Li, D. Mandrus, X. C. Xie, J. Feng, and J. Wang, Phys. Rev. B 93, 165127 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.165127
16.
S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science 289, 1530 (2000).
http://dx.doi.org/10.1126/science.289.5484.1530
17.
M. P. Delmo, S. Yamamoto, S. Kasai, T. Ono, and K. Kobayashim, Nature 457, 1112 (2009).
http://dx.doi.org/10.1038/nature07711
18.
N. A. Porter and C. H. Marrows, Sci. Rep. 2, 565 (2012).
http://dx.doi.org/10.1038/srep00565
19.
J. J. H. M. Schoonus, F. L. Bloom, W. Wagemans, H. J. M. Swagten, and B. Koopmans, Phys. Rev. Lett. 100, 127202 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.127202
20.
K. Gopinadhan, Y. J. Shin, R. Jalil, T. Venkatesan, A. K. Geim, A. H. C. Neto, and H. Yang, Nat. Commun. 6, 8337 (2015).
http://dx.doi.org/10.1038/ncomms9337
21.
V. F. Gantmakher and V. T. Dolgopolov, Phys. Usp. 53, 1 (2010).
http://dx.doi.org/10.3367/UFNe.0180.201001a.0003
22.
A. M. Goldmann, Int. J. Mod. Phys. B 24, 4081 (2010).
http://dx.doi.org/10.1142/S0217979210056451
23.
R. P. Barber, Jr., S.-Y. Hsu, J. M. Valles, Jr., R. C. Dynes, and R. E. Glover, Phys. Rev. B 73, 134516 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134516
24.
I. S. Beloborodov, A. V. Lopatin, V. M. Vinokur, and K. B. Efetov, Rev. Mod. Phys. 79, 469 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.469
25.
G. Deutscher, Nanostructured superconductors in K. H. Bennemann and J. B. Ketterson (eds.) Superconductivity - Conventional and Unconventional Superconductors Vol. 1 (Springer, Berlin, 2008) pp 259278.
26.
Y.-H. Lin and A. M. Goldman, Phys. Rev. Lett. 106, 127003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.127003
27.
J. Wang, Xu-C. Ma, Y. Qi, Y.-S. Fu, S.-H. Ji, L. Lu, J.-F. Jia, and Qi-K. Xue, Appl. Phys. Lett. 90, 113109 (2007).
http://dx.doi.org/10.1063/1.2712511
28.
J. Wang, Xu-C. Ma, Y. Qi, Y.-S. Fu, S.-H. Ji, L. Lu, X. C. Xie, J.-F. Jia, X. Chen, and Qi-K. Xue, Nanotechnology 19, 475708 (2008).
http://dx.doi.org/10.1088/0957-4484/19/47/475708
29.
A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74, 3037 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3037
30.
S. Okuma, T. Terashima, and N. Kokubo, Solid State Commun. 106, 529 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00066-0
31.
G. Sambandamurthy, L. W. Engel, A. Johansson, and D. Shahar, Phys. Rev. Lett. 92, 107005 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.107005
32.
T. I. Baturina, C. Strunk, M. R. Baklanov, and A. Satta, Phys. Rev. Lett. 98, 127003 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.127003
33.
M. Ovadia, D. Kalok, B. Sacépé, and D. Shahar, Nature Phys. 9, 415 (2013).
http://dx.doi.org/10.1038/nphys2636
34.
K. Karpinska, A. Malinowski, M. Z. Cieplak, S. Guha, S. Gershman, G. Kotliar, T. Skoskiewicz, W. Plesiewicz, M. Berkowski, and P. Lindenfeld, Phys. Rev. Lett. 77, 3022 (1996).
35.
Y. Ando, G. S. Boebinger, A. Passner, T. Kimura, and K. Kishio, Phys. Rev. Lett. 75, 4662 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4662
36.
S. Ono, Y. Ando, T. Murayama, F. F. Balakirev, J. B. Betts, and G. S. Boebinger, Phys. Rev. Lett. 85, 638 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.638
37.
M. A. Steiner, G. Boebinger, and A. Kapitulnik, Phys. Rev. Lett. 94, 107008 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.107008
38.
B. P. P. Mallett, J. Khmaladze, P. Marsik, E. Perret, A. Cerreta, M. Orlita, N. Biškup, M. Varela, and C. Bernhard, e-print arXiv:1512.03263v2 [cond-mat.supr-con].
39.
B. L. Willems, G. Zhang, J. Vanacken, V. V. Moshchalkov, S. D. Janssens, O. A. Williams, K. Haenen, and P. Wagner, J. Appl. Phys. 106, 033711 (2009).
http://dx.doi.org/10.1063/1.3195045
40.
V. Heera, J. Fiedler, M. Voelskow, A. Mücklich, R. Skrotzki, T. Herrmannsdörfer, and W. Skorupa, Appl. Phys. Lett. 100, 262602 (2012).
http://dx.doi.org/10.1063/1.4732081
41.
V. Heera, J. Fiedler, R. Hübner, B. Schmidt, M. Voelskow, W. Skorupa, R. Skrotzki, T. Herrmannsdörfer, J. Wosnitza, and M. Helm, New J. Phys. 15, 083022 (2013).
http://dx.doi.org/10.1088/1367-2630/15/8/083022
42.
V. Heera, J. Fiedler, B. Schmidt, R. Hübner, M. Voelskow, R. Skrotzki, and W. Skorupa, J. Low Temp. Phys. 180, 342 (2015).
http://dx.doi.org/10.1007/s10909-015-1318-6
43.
Y. B. Sun, Z. F. Di, T. Hu, and X. M. Xie, Adv. Cond. Mat. Phys. 2015, 963768 (2015).
http://dx.doi.org/10.1155/2015/963768
44.
T. C. Choy, A. M. Stoneham, M. Ortuno, and A. M. Somoza, Appl. Phys. Lett. 92, 012120 (2008).
http://dx.doi.org/10.1063/1.2826542
45.
A. Gangopadhyay, V. Galitski, and M. Müller, Phys. Rev. Lett. 111, 026801 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.026801
46.
M. Müller, EPL 102, 67008 (2013).
http://dx.doi.org/10.1209/0295-5075/102/67008
47.
V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Yu. Mironov, M. R. Baklanov, and Ch. Strunk, Nature 452, 613 (2008).
http://dx.doi.org/10.1038/nature06837
48.
T. I. Baturina and V. M. Vinokur, Ann. Phys. 331, 236 (2013).
http://dx.doi.org/10.1016/j.aop.2012.12.007
49.
A. Glatz, A. A. Varlamov, and V. M. Vinokur, Phys. Rev. B 84, 104510 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.104510
50.
T. I. Baturina, S. V. Postolova, A. Yu. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, EPL 97, 17012 (2012).
http://dx.doi.org/10.1209/0295-5075/97/17012
51.
V. Heera, J. Fiedler, and W. Skorupa, AIP Adv. 5, 117219 (2015).
http://dx.doi.org/10.1063/1.4935871
52.
F. A. Tumbore, Bell Syst. Tech. J. 39, 205 (1960).
http://dx.doi.org/10.1002/j.1538-7305.1960.tb03928.x
53.
C. Persson, A. Ferreira da Silva, and B. Johansson, Phys. Rev. B 63, 205119 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205119
54.
R. Skrotzki, J. Fiedler, T. Herrmannsdörfer, V. Heera, M. Voelskow, A. Mücklich, B. Schmidt, W. Skorupa, G. Gobsch, M. Helm, and J. Wosnitza, Appl. Phys. Lett. 97, 192505 (2010).
http://dx.doi.org/10.1063/1.3509411
55.
J. Fiedler, V. Heera, R. Skrotzki, T. Herrmannsdörfer, M. Voelskow, A. Mücklich, S. Oswald, B. Schmidt, W. Skorupa, G. Gobsch, J. Wosnitza, and M. Helm, Phys. Rev. B 83, 214504 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.214504
56.
J. Fiedler, V. Heera, R. Hübner, M. Voelskow, S. Germer, B. Schmidt, and W. Skorupa, J. Appl. Phys. 116, 024502 (2014).
http://dx.doi.org/10.1063/1.4887450
57.
T. Fischer, A. V. Pronin, R. Skrotzki, T. Herrmannsdörfer, J. Wosnitza, J. Fiedler, V. Heera, M. Helm, and E. Schachinger, Phys. Rev B 87, 014502 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.014502
58.
M. Tinkham, Introduction to Superconductivity, 2nd ed. (Mc Graw-Hill, New York, 1996).
59.
B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
60.
C. J. Adkins, J. M. D. Thomas, and M. W. Young, J. Phys. C: Solid St. Phys. 13, 3427 (1980).
http://dx.doi.org/10.1088/0022-3719/13/18/010
61.
E. Šimánek, Phys. Rev. B 25, 237 (1982).
http://dx.doi.org/10.1103/physrevb.25.237
62.
B. I. Belevtsev, Sov. Phys. Usp. 33, 36 (1990).
http://dx.doi.org/10.1070/PU1990v033n01ABEH002404
63.
S. Galam and A. Mauger, Phys. Rev. E 53, 2177 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.2177
64.
M. Pollak and D. H. Watt, Phys. Rev. 129, 1508 (1963).
http://dx.doi.org/10.1103/PhysRev.129.1508
65.
A. F. da Silva, A. Levine, Z. S. Momtaz, H. Boudinov, and Bo E. Sernelius, Phys. Rev. B 91, 214414 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.214414
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/10/10.1063/1.4964931
Loading
/content/aip/journal/adva/6/10/10.1063/1.4964931
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/10/10.1063/1.4964931
2016-10-11
2016-12-03

Abstract

We report on large negative and positive magnetoresistance in inhomogeneous, insulating Si:Ga films below a critical temperature of about 7 K. The magnetoresistance effect exceeds 300 % at temperatures below 3 K and fields of 8 T. The comparison of the transport properties of superconducting samples with that of insulating ones reveals that the large magnetoresistance is associated with the appearance of local superconductivity. A simple phenomenological model based on localized Cooper pairs and hopping quasiparticles is able to describe the temperature and magnetic field dependence of the sheet resistance of such films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/10/1.4964931.html;jsessionid=p5eizZm6P2sQCOrb99s853r-.x-aip-live-02?itemId=/content/aip/journal/adva/6/10/10.1063/1.4964931&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/10/10.1063/1.4964931&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/10/10.1063/1.4964931'
Right1,Right2,Right3,