Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. L. E. Oliphant and L. Rutherford, “Experiments on the transmutation of elements by protons,” Proc. R. Soc. A 141, 259 (1933).
W. M. Nevins and R. Swain, “The thermonuclear fusion rate coefficient for p − 11B Reactions,” Nucl. Fusion 40, 865 (2000).
S. Stave, M. W. Ahmed, R. H. France III, S. S. Henshaw, B. Muller, B. A. Perdue, R. M. Prior, M. C. Spraker, and H. R. Weller, “Understanding the 11B(p; α)αα reaction at the 0.675 MeV resonance,” Phys. Lett. B 696, 26 (2011).
V. F. Dmitriev, “α-particle spectrum in the reaction p + 11B → α + 8Be* → 3α,” Phys. At. Nucl. 72, 1165 (2009).
D. C. Moreau, “Potentiality of the proton-boron fuel for controlled thermonuclear fusion,” Nucl. Fusion 17, 13 (1977).
H. W. Becker, C. Rolfs, and H. P. Trautvetter, “Low-energy cross sections for 11(p,3e)*,” Z. Phys. A 327, 341 (1987).
H. Hora, G. H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizi, and X. T. He, “Fusion energy without radioactivity: Laser ignition of solid hydrogen–boron (11) Fuel,” Energy Environ. Sci. 3, 479 (2010).
G. L. Kulcinski and J. F. Santarius, “Nuclear fusion: Advanced fuels under debate,” Nature (London) 396, 724 (1998).
N. Rostoker, M. W. Binderbauer, and H. J. Monkhorst, “Colliding beam fusion reactor,” Science 278, 1419 (1997).
V. S. Belyaev, A. P. Matafonov, V. I. Vinogradov, V. Krainov, P. Lisitsa, V. S. Roussetski, A. S. Ignatyev, and G. N. Andrianov, “Observation of neutronless fusion reactions in picosecond laser plasmas,” Phys. Rev. E 72, 026406 (2005).
C. Labaune, S. Depierreux, C. Goyon, G. Loisel, V. Yahia, and J. Rafelski, “Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma,” Nat. Commun. 4, 2506 (2013).
A. Picciotto, D. Margarone, A. Velyhan, P. Bellutti, J. Krasa, A. Szydlowsky, G. Bertuccio, Y. Shi, A. Mangione, J. Prokupek, A. Malinowska, E. Krousky, J. Ullschmied, L. Laska, M. Kucharik, and G. Korn, “Boron-proton nuclear-fusion enhancement induced in boron-doped silicon targets by low-contrast pulsed laser,” Physical Review X 4, 031030 (2014).
D. Margarone, A. Picciotto, A. Velyhan, J. Krasa, M. Kucharik, A. Mangione, A. Szydlowsky, A. Malinowska, G. Bertuccio, Y. Shi, M. Crivellari, J. Ullschmied, P. Bellutti, and G. Korn, “Advanced scheme for high-yield laser driven nuclear reactions,” Plasma Phys. Control. Fusion 57, 014030 (7pp.) (2015).
V. S. Belyaev, V. P. Krainov, A. P. Matafonov, and B. V. Zagreev, “The new possibility of the fusion p + 11B chain reaction being induced by intense laser pulses,” Laser Phys. Lett. 12, 096001 (5pp) (2015).
S. Eliezer, H. Hora, G. Korn, N. Nissim, and J. M. Martinez Val, “Avalanche proton-boron fusion based on elastic nuclear collisions,” Physics Of Plasmas 23, 050704 (2016).
C. Ohlandt, T. Cammash, and K. G. Powell, “A design study of p-11B gas dynamic mirror fusion propulsion system,” in CP654 Space Technology and Applications International Forum, STAIF 2003, edited by M. S. El-Genk (American Institute of Physics, College Park, MD, 2003), p 490.
H. Hora, G. Korn, L. Giuffrida, D. Margarone, A. Picciotto, J. Krasa, K. Jungwirth, J. Ullschmied, P. Lalousis, S. Eliezer, G. H. Miley, S. Moustaizis, and G. Mourou, “Fusion energy using avalanche increased boron reactions for block-ignition by ultrahigh power picosecond laser pulses,” Laser and Particle Beams 33, 607619 (2015).
U. Amaldi, R. Bonomi, S. Braccini et al., “Accelerators for hadron therapy: From Lawrence cyclotrons to linacs,” Nucl. Instrum. Methods A 620, 563577 (2010).
M. Durante and J. S. Loeffer, “Charged particles in radiation oncology,” Nature Reviews Clinical Oncology 7, 3743 (2010).
E. C. Halperin, “Particle therapy and treatment of cancer,” Lancet. Oncology 7, 676685 (2006).
H. Tsujii, “Clinical advantages of carbon ion radiotherapy,” N.J. Phys. 10, 075009 (2008).
D. Schulz-Ertner, C. P. Karger et al., “Effectiveness of carbon ion radiotherapy in the treatment of skull base chordomas,” Int. J. Radiat. Oncol. Biol. Phys. 68, 449457 (2007).
W. Kraft-Weyrather, S. Ritter et al., “RBE for carbon track-segment irradiation in cell lines of differing repair capacity,” Int. J. Radiat. Biol. 75, 13571364 (1999).
N. Hamada, “Recent insights into the biological action of heavy-ion radiation,” J. Radiat. Res. 50, 19 (2009).
R. F. Barth et al., “Boron neutron capture therapy for cancer,” Scientific American 263(4), 100103 (1990).
K. J. Riley et al., “Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer,” Radiation Oncology 7, 146 (2012).
R. F. Barth, J. A. Coderre, M. G. H. Vicente, and T. E. Blue, “Boron neutron capture therapy of cancer: Current status and future prospects,” Clinical Cancer Research 11(11), 39874002 (2005).
D.-K. Yoon, J.-Y. Jung, and T. S. Suh, “Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study,” Applied Physics Letters 105, 223507 (2014).
MCNPX website:
J. M. Freeman, J. G. Jenkin, G. Murray, “The threshold for the reaction 10B(p,n)10C and the ft value of the superallowed fermi transition 10C(β+)10B**,” Phys. Lett. 22, 177 (1966).
J. M. Freeman, D. C. Robinson, G. L. Wick, “Magnitude of the vector coupling constant deduced from recent beta decay measurements,” Phys. Lett. B 30, 240 (1969).
M. Hyvonen-Dabek, Journal of Radioanalytical Chemistry 63(2) (1981).
A. B. Clegg, K. J. Foley, G. L. Salmon, and R. E. Segel, Proceedings of the Physical Society 78, 5 (1961).
S. Chhillar, R. Acharya, S. Sodaye, and P. K. Pujari, “Analytical Chemistry 86(22) (2014).
R. B. Day and T. Huust, “Gamma radiation from B10 bombarded by protons,” Physical review 95, 4 (1954).
L. Valentin et al., “Reactions induites par des protons de 155 MeV sur des noyaux legers,” Physics Letters 7, 2 (1963).

Data & Media loading...


Article metrics loading...



We propose a series of simulations about the potential use of Boron isotopes to trigger neutron-free (aneutronic) nuclear reactions in cancer cells through the interaction with an incoming energetic proton beam, thus resulting in the emission of characteristic prompt gamma radiation (429 keV, 718 keV and 1435 keV). Furthermore assuming that the Boron isotopes are absorbed in cancer cells, the three alpha-particles produced in each p-11B aneutronic nuclear fusion reactions can potentially result in the enhancement of the biological dose absorbed in the tumor region since these multi-MeV alpha-particles are stopped inside the single cancer cell, thus allowing to spare the surrounding tissues. Although a similar approach based on the use of 11B nuclei has been proposed in [Yoon et al. Applied Physics Letters 105, 223507 (2014)], our work demonstrate, using Monte Carlo simulations, the crucial importance of the use of 10B nuclei (in a solution containing also 11B) for the generation of prompt gamma-rays, which can be applied to medical imaging. In fact, we demonstrate that the use of 10B nuclei can enhance the intensity of the 718 keV gamma-ray peak more than 30 times compared to the solution containing only 11B nuclei. A detailed explanation of the origin of the different prompt gamma-rays, as well as of their application as real-time diagnostics during a potential cancer treatment, is here discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd