Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941442
1.
1.R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, Nat. Biotechnol. 17, 375 (1999).
http://dx.doi.org/10.1038/7933
2.
2.S. Lee, K. Park, K. Kim, K. Choi, and I. C. Kwon, Chem. Commun. 4250 (2008).
3.
3.J. H. Rao, A. Dragulescu-Andrasi, and H. Q. Yao, Curr. Opin. Biotechnol. 18, 17 (2007).
http://dx.doi.org/10.1016/j.copbio.2007.01.003
4.
4.Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G. Bawendi, and J. V. Frangioni, Mol. Imaging 2, 50 (2003).
http://dx.doi.org/10.1162/153535003765276282
5.
5.R. Weissleder, Nat. Biotechnol. 19, 316 (2001).
http://dx.doi.org/10.1038/86684
6.
6.J. Zhang and S. Petoud, Chem. Eur. J. 14, 1264 (2008).
http://dx.doi.org/10.1002/chem.200701068
7.
7.S. Stolik, J. A. Delgado, A. Pérez, and L. Anasagasti, J. Photochem. Photobiol. B 57, 90 (2000).
http://dx.doi.org/10.1016/S1011-1344(00)00082-8
8.
8.S. Tsunekawa, S. Ito, and Y. Kawazoe, Nano Lett. 3, 871 (2003).
http://dx.doi.org/10.1021/nl034129t
9.
9.S. W. Kwon and D. H. Yoon, J. Eur. Ceram. Soc. 27, 247 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.031
10.
10.S. W. Kwon and D. H. Yoon, Ceram. Int. 33, 1357 (2007).
http://dx.doi.org/10.1016/j.ceramint.2006.05.008
11.
11.Q. X. Guo, Y. S. Zhao, W. L. Mao, Z. W. Wang, Y. J. Xiong, and Y. N. Xia, Nano Lett. 8, 972 (2008).
http://dx.doi.org/10.1021/nl0731217
12.
12.H. Guo, H. Yu, X. X. Zhang, L. F. Chang, Z. J. Lan, Y. M. Li, and L. J. Zhao, Opt. Express 21, 24742 (2013).
http://dx.doi.org/10.1364/OE.21.024742
13.
13.N. Hu, H. Yu, M. Zhang, P. Zhang, Y. Z. Wang, and L. J. Zhao, Phys. Chem. Chem. Phys. 13, 1499 (2011).
http://dx.doi.org/10.1039/C0CP00903B
14.
14.J. Ge, L. J. Zhao, H. Guo, Z. J. Lan, L. F. Chang, Y. M. Li, and H. Yu, Phys. Chem. Chem. Phys. 15, 17281 (2013).
http://dx.doi.org/10.1039/c3cp53073f
15.
15.Y. Wang and J. Ohwaki, Appl. Phys. Lett. 63, 3268 (1993).
http://dx.doi.org/10.1063/1.110170
16.
16.V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, Appl. Phys. Lett. 81, 1937 (2002).
http://dx.doi.org/10.1063/1.1497196
17.
17.M. Beggiora, I. M. Reaney, and M. S. Islam, Appl. Phys. Lett. 83, 467 (2003).
http://dx.doi.org/10.1063/1.1594842
18.
18.G. Bergerhoff, M. Berndt, and K. Brandenburg, J. Res. Natl. Inst. Stand. Technol. 101, 221 (1996).
http://dx.doi.org/10.6028/jres.101.023
19.
19.B. Delley, J. Chem. Phys. 113, 7756 (2000).
http://dx.doi.org/10.1063/1.1316015
20.
20.S. J. Patwe, S. N. Achary, and A. K. Tyagi, Mater. Res. Bull. 36, 597 (2001).
http://dx.doi.org/10.1016/S0025-5408(01)00529-3
21.
21.P. P. Fedorov and B. P. Sobolev, Sov. Phys. Crystallogr. 37, 651 (1992).
22.
22.I. I. Buchinskaya and P. P. Fedorov, Russ. Chem. Rev. 73, 371 (2004).
http://dx.doi.org/10.1070/RC2004v073n04ABEH000811
23.
23.R. D. Shannon, Actra Cryst. 32, 751 (1976).
http://dx.doi.org/10.1107/S0567739476001551
24.
24.J. Rodriguez-Carvajal, FULLPROF program for Rietveld, Profile Matching and Integrated Intensities Refinement of X-ray and/or Neutron Data (Satellite Meeting on Powder Diffraction of the XVth Congress of IUCr, Toulouse, France, 1990).
25.
25.T. Roisnel and J. Rodriguez-Carvajal, Epdic 7: European Powder Diffraction Pts 1 and 2 378, 118 (2001).
26.
26.B. Djuričić, S. Pickering, D. McGarry, P. Glaude, P. Tambuyser, and K. Schuster, Ceram. Int. 21, 195 (1995).
http://dx.doi.org/10.1016/0272-8842(95)90910-B
27.
27.J. Luo and R. Stevens, J. Am. Ceram. Soc. 82, 1922 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb02017.x
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941442
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941442
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941442
2016-02-02
2016-09-29

Abstract

Tm3+ionsdoped-PbFnanocrystals in oxyfluoride glassceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm3+dopednanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an to site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm3+dopednanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941442.html;jsessionid=o1O1aaWqqh2m_xwBZPpt--qL.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941442&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941442&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941442'
Right1,Right2,Right3,