Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997).
2.P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London) 406, 865 (2000).
3.T. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. Part 1 39, 413 (2000).
4.J E Northrup, Appl. Phys. Lett 95, 133107 (2009).
5.P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. DenBaars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 75, 1706 (1999).
6.K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, J. Cryst. Growth 221, 316 (2000).
7.H Masui, S Nakamura, S P DenBaars, and U K Mishra, IEEE Transactions on Electron Devices 57, 88 (2010).
8.Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama, and T. Nakamura, Appl. Phys. Express 2, 092101 (2009).
9.H. Zhong, A. Tyagi, N. N. Fellows, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBarrs, and S. Nakamura, Electron. Lett. 43, 825 (2007).
10.I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, Appl. Phys. Lett. 76, 3768 (2000).
11.B. Imer, F. Wu, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 88, 061908 (2006).
12.X. Ni, Ü. Özgür, A. A. Baski, H. Morkoç, L. Zhou, D. J. Smith, and C. A. Tran, Appl. Phys. Lett. 90, 182109 (2007).
13.D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, J. Cryst. Growth 311, 2887 (2009).
14.K. Xing, Y. Gong, J. Bai, and T. Wang, Appl. Phys. Lett. 99, 181907 (2011).
15.J. Bai, Y. Gong, K. Xing, X. Yu, and T. Wang, Appl. Phys. Lett. 102, 101906 (2013).
16.Y. Gong, K. Xing, B. Xu, X. Yu, Z. Li, J. Bai, and T. Wang, ECS Transactions 66, 151 (2015).
17.J. Bai, B. Xu, F. G. Guzman, K. Xing, Y. Gong, Y. Hou, and T. Wang, unpublished.
18.T. Wang, K. B. Lee, J. Bai, P. J. Parbrook, R. J. Airey, Q. Wang, G. Hill, F. Ranalli, and A. G. Cullis, Appl. Phys. Lett. 89, 081126 (2006).
19.P. de Mierry, N. Kriouche, M. Nemoz, and G. Nataf, Appl. Phys. Lett. 94, 191903 (2009).
20.N. Kriouche, P. Vennéguès, M. Nemoz, G. Nataf, and P. de Mierry, J. Cryst. Growth 312, 2625 (2010).
21.T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000).
22.P. Vennéguès, Semicond. Sci. Technol. 27, 024004 (2012).
23.F. Wu, Y. D. Lin, A. Chakraborty, H. Ohta, S. P. DenBaars, S. Nakamura, and J. S. Speck, Appl. Phys. Lett. 96, 231912 (2010).
24.C. F. Johnston, M. J. Kappers, and C. J. Humphreys, J. Appl. Phys. 105, 073102 (2009).
25.X. Ni, Ü. Özgür, Y. Fu, N. Biyikli, J. Xie, A. A. Baski, H. Morkoç, and Z. Liliental-Weber, Appl. Phys. Lett. 89, 262105 (2006).

Data & Media loading...


Article metrics loading...



We demonstrate a great improvement in the crystal quality of our semi-polar (11-22) GaN overgrown on regularly arrayed micro-rod templates fabricated using a combination of industry-matched photolithography and dry-etching techniques. As a result of our micro-rod configuration specially designed, an intrinsic issue on the anisotropicgrowth rate which is a great challenge in conventional overgrowth technique for semi-polar GaN has been resolved. Transmission electron microscopy measurements show a different mechanism of defect reduction from conventional overgrowth techniques and also demonstrate major advantages of our approach. The dislocations existing in the GaN micro-rods are effectively blocked by both a SiO mask on the top of each GaN micro-rod and lateral growth along the -direction, where the growth rate along the -direction is faster than that along any other direction. Basal stacking faults (BSFs) are also effectively impeded, leading to a distribution of BSF-free regions periodically spaced by BSF regions along the [-1-123] direction, in which high and low BSF density areas further show a periodic distribution along the [1-100] direction. Furthermore, a defect reduction model is proposed for further improvement in the crystalline quality of overgrown (11-22) GaN on sapphire.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd