Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941573
1.
1.K. Bobzin, N. Bagcivan, A. Reinholdt, and M. Ewering, Surf. Coatings Technol. 205, 1444 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2010.07.040
2.
2.S.E. Cordes, CIRP J. Manuf. Sci. Technol. 5, 20 (2012).
http://dx.doi.org/10.1016/j.cirpj.2011.11.003
3.
3.P. Eklund, M. Sridharan, M. Sillassen, and J. Bøttiger, Thin Solid Films 516, 7447 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.03.038
4.
4.J.M. Andersson, Z. Czigány, P. Jin, and U. Helmersson, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 22, 117 (2004).
http://dx.doi.org/10.1116/1.1636157
5.
5.J. Ramm, M. Ante, T. Bachmann, B. Widrig, H. Brändle, and M. Döbeli, Surf. Coatings Technol. 202, 876 (2007).
http://dx.doi.org/10.1016/j.surfcoat.2007.05.044
6.
6.J. Ramm, A. Neels, B. Widrig, M. Döbeli, L.D.A. Vieira, A. Dommann, and H. Rudigier, Surf. Coatings Technol. 205, 1356 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2010.08.152
7.
7.A. Khatibi, J. Palisaitis, C. Höglund, A. Eriksson, P.O.Å. Persson, J. Jensen, J. Birch, P. Eklund, and L. Hultman, Thin Solid Films 519, 2426 (2011).
http://dx.doi.org/10.1016/j.tsf.2010.11.052
8.
8.A. Khatibi, J. Lu, J. Jensen, P. Eklund, and L. Hultman, Surf. Coatings Technol. 206, 3216 (2012).
http://dx.doi.org/10.1016/j.surfcoat.2012.01.008
9.
9.H. Najafi, A. Karimi, P. Dessarzin, and M. Morstein, Surf. Coatings Technol. 214, 46 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2012.10.062
10.
10.A. Khatibi, A. Genvad, E. Go, E. Göthelid, J. Jensen, P. Eklund, and L. Hultman, Acta Mater. 61, 4811 (2013).
http://dx.doi.org/10.1016/j.actamat.2013.05.002
11.
11.B. Alling, A. Khatibi, S.I. Simak, P. Eklund, and L. Hultman, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 31, 030602 (2013).
http://dx.doi.org/10.1116/1.4795392
12.
12.I. Petrov, P.B. Barna, L. Hultman, J.E.E. Greene, and I. Introduction, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 21, S117 (2003).
http://dx.doi.org/10.1116/1.1601610
13.
13.J. Ramm, M. Ante, H. Brändle, A. Neels, A. Dommann, and M. Döbeli, Adv. Eng. Mater. 9, 604 (2007).
http://dx.doi.org/10.1002/adem.200700081
14.
14.B.K. Tay, Z.W. Zhao, and D.H.C. Chua, Mater. Sci. Eng. R Reports 52, 1 (2006).
http://dx.doi.org/10.1016/j.mser.2006.04.003
15.
15.W. Ensinger, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 127-128, 796 (1997).
http://dx.doi.org/10.1016/S0168-583X(97)00010-4
16.
16.W. Ensinger, Surf. Coatings Technol. 80, 35 (1996).
http://dx.doi.org/10.1016/0257-8972(95)02682-7
17.
17.D.M. Mattox, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 7, 1105 (1989).
http://dx.doi.org/10.1116/1.576238
18.
18.D.E. Ashenford, F. Long, W.E. Hagston, B. Lunn, and A. Matthews, Surf. Coatings Technol. 116-119, 699 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00181-4
19.
19.D. Music, F. Nahif, K. Sarakinos, N. Friederichsen, and J.M. Schneider, Appl. Phys. Lett. 98, 111908 (2011).
http://dx.doi.org/10.1063/1.3570650
20.
20.H. Najafi, A. Karimi, P. Dessarzin, and M. Morstein, Thin Solid Films 520, 1597 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.08.075
21.
21.H. Najafi, A. Karimi, E. Oveisi, and M. Morstein, Thin Solid Films 572, 176 (2014).
http://dx.doi.org/10.1016/j.tsf.2014.07.066
22.
22.R. Godby, M. Schlüter, and L. Sham, Phys. Rev. Lett. 56, 2415 (1986).
http://dx.doi.org/10.1103/PhysRevLett.56.2415
23.
23.P. Rinke, A. Qteish, J. Neugebauer, and M. Scheffler, Phys. Status Solidi 245, 929 (2008).
http://dx.doi.org/10.1002/pssb.200743380
24.
24.C. Loschen, J. Carrasco, K.M. Neyman, and F. Illas, Phys. Rev. B 75, 035115 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035115
25.
25.A. Janotti, J.B. Varley, P. Rinke, N. Umezawa, G. Kresse, and C.G. Van de Walle, Phys. Rev. B 81, 085212 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085212
26.
26.C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.253
27.
27.V.I. Anisimov, J. Zaanen, and O.K. Andersen, Phys. Rev. B 44, 943 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.943
28.
28.V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, J. Phys. Condens. Matter 9, 767 (1997).
http://dx.doi.org/10.1088/0953-8984/9/4/002
29.
29.A. V Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).
http://dx.doi.org/10.1063/1.2404663
30.
30.J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).
http://dx.doi.org/10.1063/1.1564060
31.
31.K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara, Phys. Rev. B 68, 085110 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085110
32.
32.K.J.W. Atkinson, R.W. Grimes, M.R. Levy, Z.L. Coull, and T. English, J. Eur. Ceram. Soc. 23, 3059 (2003).
http://dx.doi.org/10.1016/S0955-2219(03)00101-8
33.
33.J.R. Weber, A. Janotti, and C.G. Van de Walle, Microelectron. Eng. 86, 1756 (2009).
http://dx.doi.org/10.1016/j.mee.2009.03.059
34.
34.J.R. Weber, A. Janotti, and C.G. Van de Walle, J. Appl. Phys. 109, 033715 (2011).
http://dx.doi.org/10.1063/1.3544310
35.
35.M. Choi, A. Janotti, and C.G. Van de Walle, J. Appl. Phys. 113, 044501 (2013).
http://dx.doi.org/10.1063/1.4784114
36.
36.G. Kresse and J. Furthmu, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
37.
37.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
38.
38.J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39.I. Levin and D. Brandon, J. Am. Ceram. Soc. 81, 1995 (2005).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02581.x
40.
40.H. Pinto, R. Nieminen, and S. Elliott, Phys. Rev. B 70, 125402 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125402
41.
41.G. Gutiérrez, A. Taga, and B. Johansson, Phys. Rev. B 65, 012101 (2001).
http://dx.doi.org/10.1103/PhysRevB.65.012101
42.
42.F. Maglia, S. Gennari, and V. Buscaglia, J. Am. Ceram. Soc. 91, 283 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.02149.x
43.
43.X.S. Du, S. Hak, T. Hibma, O.C. Rogojanu, and B. Struth, J. Cryst. Growth 293, 228 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.05.013
44.
44.S.-H. Wei, L. Ferreira, J. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.9622
45.
45.A. Zunger, S.-H. Wei, L.G. Ferreira, and J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.353
46.
46.L. Zhou, D. Holec, and P.H. Mayrhofer, J. Appl. Phys. 113, 043511 (2013).
http://dx.doi.org/10.1063/1.4789378
47.
47.K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
http://dx.doi.org/10.1107/S0021889811038970
48.
48.G. Rollmann, A. Rohrbach, P. Entel, and J. Hafner, Phys. Rev. B 69, 165107 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.165107
49.
49.G. Hautier, S.P. Ong, A. Jain, C.J. Moore, and G. Ceder, Phys. Rev. B 85, 155208 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155208
50.
50.M. Pohler, R. Franz, J. Ramm, P. Polcik, and C. Mitterer, Thin Solid Films 550, 95 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.10.125
51.
51.C.M. Koller, J. Ramm, S. Kolozsvári, F. Munnik, J. Paulitsch, and P.H. Mayrhofer, Scr. Mater. 97, 49 (2015).
http://dx.doi.org/10.1016/j.scriptamat.2014.10.037
52.
52.V. Edlmayr, M. Pohler, I. Letofsky-Papst, and C. Mitterer, Thin Solid Films 534, 373 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.02.046
53.
53.A.H. Schultz and V.S. Stubican, J. Am. Ceram. Soc. 53, 613 (1970).
http://dx.doi.org/10.1111/j.1151-2916.1970.tb15984.x
54.
54.D. Holec, L. Zhou, R. Rachbauer, and P.H. Mayrhofer, J. Appl. Phys. 113, 113510 (2013).
http://dx.doi.org/10.1063/1.4795590
55.
55.D. Holec, R. Rachbauer, L. Chen, L. Wang, D. Luef, and P.H. Mayrhofer, Surf. Coat. Technol. 206, 1698 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2011.09.019
56.
56.B. Alling, M. Odén, L. Hultman, and I.A. Abrikosov, Appl. Phys. Lett. 95, 181906 (2009).
http://dx.doi.org/10.1063/1.3256196
57.
57.S.S. Kim and T.H. Sanders, J. Am. Ceram. Soc. 84, 1881 (2004).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb00930.x
58.
58.E. Wallin, J.M. Andersson, M. Lattemann, U. Helmersson, and M., 3877 (2008).
59.
59.E. Wallin, J.M. Andersson, E.P. Münger, V. Chirita, and U. Helmersson, Phys. Rev. B 74, 125409 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.125409
60.
60.J. Houska, Surf. Coatings Technol. 254, 131 (2014).
http://dx.doi.org/10.1016/j.surfcoat.2014.05.072
61.
61.J. Houska, Surf. Coatings Technol. 235, 333 (2013).
http://dx.doi.org/10.1016/j.surfcoat.2013.07.062
62.
62.R.W. Grimes and K.P.D. Lagerlof, Acta Metall. 46, 5689 (1998).
63.
63.S.K. Mohapatra and F.A. Kröger, J. Am. Ceram. Soc. 61, 106 (1978).
http://dx.doi.org/10.1111/j.1151-2916.1978.tb09249.x
64.
64.J. Corish, J. Hennessy, and W.C. Mackrodt, 49, 42 (1988).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941573
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941573
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941573
2016-02-03
2016-09-29

Abstract

Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlCr)Osolid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (AlCr)O which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941573.html;jsessionid=V2n-fnPyTXuShFvjsm5QzBOT.x-aip-live-02?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941573&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941573&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941573'
Right1,Right2,Right3,