Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941676
1.
1.A.B. Awan and Z.A. Khan, “Recent progress in renewable energy – Remedy of energy crisis in Pakistan,” J. Renew. Sust. Ener. 33, 236253 (2014).
http://dx.doi.org/10.1016/j.rser.2014.01.089
2.
2.H.B. Khalil and S.J.H. Zaidi, “Energy crisis and potential of solar energy in Pakistan,” J. Renew. Sust. Ener. Rev. 31, 194201 (2014).
http://dx.doi.org/10.1016/j.rser.2013.11.023
3.
3.V.V. Kharton, F.M.B. Marques, and A. Atkinson, “Properties of solid oxide electrolyte ceramics: a brief review,” J. Solid Stat. Ion. 174, 135149 (2004).
http://dx.doi.org/10.1016/j.ssi.2004.06.015
4.
4.M. Ali, S.A, A. Muchtar, N. Muhamad, and A.B. Sulong, “A review on preparation of sdc-carbonate as composite electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFC),” in IEEE First Conference on Clean Energy and Technology CET (2011), pp. 394399.
5.
5.Z Gao, J Huang, Z Mao, C Wang, and Z Liu, “Preparation and characterization of nanocrystalline Ce 0.8 Sm 0.2 O 1.9 for low temperature solid oxide fuel cells based on composite electrolyte,” International journal of hydrogen energy 35(2), 731-737.
http://dx.doi.org/10.1016/j.ijhydene.2009.10.090
6.
6.N.H. Menzler, F. Tietz, S. Uhlenbruck, and H.P. Buchkremer, “Materials and manufacturing technologies for solid oxide fuel cells,” J. Mater. Sci. 45, 31093135 (2010).
http://dx.doi.org/10.1007/s10853-010-4279-9
7.
7.Z Gao, Z Mao, C Wang, and Z Liu, “Novel SrTi x Co 1− x O 3−δ cathodes for low-temperature solid oxide fuel cells,’” International journal of hydrogen energy 36(12), 7229-7233.
http://dx.doi.org/10.1016/j.ijhydene.2011.02.074
8.
8.Z Gao, Z Mao, C Wang, and Z Liu, “Preparation and characterization of La 1− x SrxNiyFe 1− y O 3 − δ cathodes for low-temperature solid oxide fuel cells,” international journal of hydrogen energy 35(23), 12905-12910.
http://dx.doi.org/10.1016/j.ijhydene.2010.08.077
9.
9.Z Gao, Z Mao, C Wang, J Huang, and Z Liu, “Composite electrolyte based on nanostructured Ce0. 8Sm0. 2O1. 9 (SDC) for low-temperature solid oxide fuel cells,” International Journal of Energy Research 33(13), 1138-1144.
http://dx.doi.org/10.1002/er.1597
10.
10.Z Gao, X Liu, B Bergman, and Z Zhao, “Enhanced ionic conductivity of Ce0. 8Sm0. 2O2-[delta] by Sr addition,” Journal of Power Sources 208, 225-231.
http://dx.doi.org/10.1016/j.jpowsour.2012.01.001
11.
11.Z Gao, Z Mao, C Wang, and Z Liu, “Development of trimetallic Ni–Cu–Zn anode for low temperature solid oxide fuel cells with composite electrolyte,” International journal of hydrogen energy 35(23), 12897-12904.
http://dx.doi.org/10.1016/j.ijhydene.2010.08.078
12.
12.S. Hui, J. Roller, S. Yick, X. Zhang, C.D. Petit, Y. Xie, R. Maric, and D. Ghosh, “A brief review of the ionic conductivity enhancement for selected oxide electrolytes,” J. Power Sour. 172, 493502 (2007).
http://dx.doi.org/10.1016/j.jpowsour.2007.07.071
13.
13.J.E. Shemilt and H.M. Williams, “Effects of composition and processing method on the low temperature conductivity of samarium doped ceria electrolytes,” J. Mater. Sci. 18, 17351737 (1999).
14.
14.Wei Wang, Wei Zhou, Ran Ran, Rui Cai, and Zongping Shao, “Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer,” Electrochemistry Communications 11, 194197 (2009).
http://dx.doi.org/10.1016/j.elecom.2008.11.014
15.
15.S. Park, J.M. Vohs, and R.J. Gorte, “Direct oxidation of hydrocarbons in a solid-oxide fuel cell,” Nature 404, 265 (2000).
http://dx.doi.org/10.1038/35005040
16.
16.Y.B. Lin, Z.L. Zhan, J. Liu, and S.A. Barnett, “Direct operation of solid oxide fuel cells with methane fuel,” Solid State Ionics 176, 1827 (2005).
http://dx.doi.org/10.1016/j.ssi.2005.05.008
17.
17.J. Meusinger, E. Riensche, and U. Stimming, “Reforming of natural gas in solid oxide fuel systems,” J. Power Sources 71, 315 (1998).
http://dx.doi.org/10.1016/S0378-7753(97)02763-8
18.
18.M. Dokiya, “SOFC system and Technology,” Solid State Ionics 383, 152153 (2002).
19.
19.S. Rakass, H. Oudghiri-Hassani, P. Rowntree, and N. Abatzoglou, “Steam reforming of methane over unsupported nickel catalysts,” J. Power Sources 158, 485 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2005.09.019
20.
20.Sfeir J, J. Van herle, and A. J. McEvoy, in Proc. 3rd European Solid Oxide Fuel Cell Forum, edited byP. Stevens (European Fuel Cell Forum, Switzerland, 1998), pp. 267±276.
21.
21.E. S. Putna, J. Stubenrauch, J. M. Vohs, and R. J. Gorte, “Ceria-based anodes for the direct oxidation of methane in solid oxide fuel cells,” Langmuir 11, 4832±4837 (1995).
http://dx.doi.org/10.1021/la00012a040
22.
22.T. Aida, A. Abudala, M. Ihara, H. Komiyama, and K. Yamada, in Proc. 4th Int. Symp. on Solid Oxide Fuel Cells, edited byM. Dokiya, O. Yamamoto, H. Tagawa, and S. C. Singhal (Electrochemical Soc, Pennington, 1995), pp. 801±809.
23.
23.Z. Gao, R. Raza, B. Zhu, Z. Mao, C. Wang, and Z. Liu, “Preparation and characterization of Sm0.2Ce0.8O1.9 /Na2CO3 nanocomposite electrolyte for low-temperature solid oxide fuel cells,” Int.J. Hyd. Ener. 36(6), 15 (2011).
http://dx.doi.org/10.1002/er.1928
24.
24.S.C. Singhal and K. Kendall, High temperature solid oxide fuel cells: Fundamental design and applications, First ed. (Elsevier, Amsterdam, 2003).
25.
25.Y. Maa, X. Wanga, H. A. Khalifa, B. Zhu, and M. Muhammed, “Enhanced ionic conductivity in calcium doped ceria Carbonate electrolyte A composite effect,” Int.J. Hyd. Ener. 37, 1940119406 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2011.09.122
26.
26.M. Alaydrus, M. Sakaue, S.M. Aspera, T.D.K. Wungu, T.P.T. Linh, H. Kasai, T. Ishihara, and T. Mohri, “A first-principles study on defect association and oxygen ion migration of Sm(3+) and Gd(3+) co-doped ceria,” J. Phys.: Condens. Matter. 25, 225401 (2013) 1–8.
http://dx.doi.org/10.1088/0953-8984/25/22/225401
27.
27.J. Di, M. Chen, C. Wang, J. Zheng, L. Fan, and B. Zhu, “Samarium doped ceria–(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell,” J. Pow. Sour. 195, 46954699 (2010).
http://dx.doi.org/10.1016/j.jpowsour.2010.02.066
28.
28.M.A. Khan, R. Raza, R.B. Lima, M.A. Chaudhry, E. Ahmed, and G. Abbas, “Comparative study of the nano-composite electrolytes based on samaria-doped ceria for low temperature solid oxide fuel cells (LT-SOFCs),” Int.J. Hyd. Ener. 38, 1652416531 (2013).
http://dx.doi.org/10.1016/j.ijhydene.2013.05.060
29.
29.X. Wang, Y. Ma, S. Li, B. Zhu, and C. Muhammed, “SDC/Na2CO3 nanocomposite New freeze drying based synthesis and application as electrolyte in low-temperature solid oxide fuel cells,” Int.J. Hyd. Ener. 37, 19380-19387 (2012).
http://dx.doi.org/10.1016/j.ijhydene.2011.10.061
30.
30.X. Wang, Y. Ma, R. Raza, M. Muhammed, and B. Zhu, “Novel core–shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs,” J. Electrochem. Commun. 10, 16171620 (2008).
http://dx.doi.org/10.1016/j.elecom.2008.08.023
31.
31.Asia Rafique, Rizwan Raza, Nadeem Akram, M. Kaleem Ullah, Amjad Ali, Muneeb Irshad, Khurram Siraj, M. Ajmal Khan, Bin Zhu, and Richard Dawson, “Significance enhancement in the conductivity of core shell nanocomposite electrolytes,” RSC Adv. 5, 86322 (2015).
http://dx.doi.org/10.1039/C5RA16763A
32.
32.Ying Ma, Xiaodi Wang, Rizwan Raza, Mamoun Muhammed, and Bin Zhu, “Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs,” International journal of hydrogen energy Vol 35(7), 2580 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2009.03.052
33.
33.Ying Ma, Xiaodi Wang, Rizwan Raza, Mamoun Muhammed, and Bin Zhu, “Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs,” International journal of hydrogen energy 35, 25802585 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2009.03.052
34.
34.J Huang, L Yang, R Gao, Z Mao, and C. Wang, “A high-performance ceramic fuel cell with samarium doped ceria–carbonate composite electrolyte at low temperatures,” Electrochem Commun 8(5), 7859 (2006).
http://dx.doi.org/10.1016/j.elecom.2006.03.016
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941676
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941676
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941676
2016-02-04
2016-12-06

Abstract

Nanocomposites Samariumdoped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous NaCO (SDCC) and GDC amorphous NaCO (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytesmaterials for low temperature Solid Oxide Fuel Cell(SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolytematerials. EDX analysis validated the presence of Sm and Gd in both single and dual phase electrolytematerials; also confirming the presence of amorphous NaCO in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous NaCO and SDC/ amorphous NaCO nanocomposites using methane fuel. It is observed that dual phase core shell electrolytesmaterials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolytematerials (SDC, GDC) with methane fuel.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941676.html;jsessionid=81632cKnr22dvX80-PEAibKW.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941676&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941676&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941676'
Right1,Right2,Right3,