Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. H. Chang, H. Ota, and T. Maeda, Appl. Phys. Exp. 8, 054201 (2015).
2.G. K. Dalapati and Y. Tong, Appl. Phys. Lett. 90, 183510 (2007).
3.C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, Appl. Phys. Exp. 5, 114001 (2012).
4.H. X. Xu, J. P. Xu, C. X. Li, and P. T. Lai, Appl. Phys. Lett. 97, 022903 (2010).
5.S. Swaminathan, Y. Sun, P. Pianetta, and Paul C. McInthhyre, J. Appl. Phys. 110, 094105 (2011).
6.C. A. Lin, H. C. Lin, T. H. Chiang, R. L. Chu, L. K. Chu, T. D. Lin, Y. C. Chang, W. E. Wang, J. R. Kwo, and M. W. Hong, Appl. Phys. Exp. 4, 111101 (2011).
7.Q. Xie, S. R. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X. P. Qu, Y. L. Jiang, D. Deduytsche, and C. Detavernier, Semicond. Sci. Technol. 27, 074012 (2012).
8.H. H. Wei, G. He, M. Liu, M. Zhang, X. S. Chen, and Z. Q. Sun, Sci. Adv Mater 6, 2652 (2014).
9.G. He, X. S. Chen, and Z. Q. Sun, Sur. Sci. Rep. 68, 68 (2013).
10.G. He, L. Q. Zhu, Q. Wang, and L. D. Zhang, Prog. Mater Sci. 56, 475 (2011).
11.Y. H. Xiong, H. L. Tu, J. Du, M. Ji, X. Q. Zhang, and L. Wang, Appl. Phys. Lett. 97, 012901 (2010).
12.Y. H. Xiong, H. L. Tu, J. Du, X. Q. Zhang, D. P. Chen, and W. W. Wang, Appl. Phys. Lett. 98, 082906 (2011).
13.X. Q. Zhang, H. L. Tu, Y. W. Guo, H. B. Zhao, M. M. Yang, F. Wei, Y. H. Xiong, Z. M. Yang, J. Du, and W. W. Wang, J. Appl. Phys. 111, 014102 (2012).
14.Y. H. Xiong, H. L. Tu, J. Du, L. G. Wang, F. Wei, X. Q. Chen, M. M Yang, H. B. Zhao, D. P. Chen, and W. W. Wang, Phys. Status Solidi B 251, 1635 (2014).
15.H. H. Wei, G. He, J. Gao, M. Liu, X. S. Chen, and Z. Q. Sun, J. Alloys Comp. 615, 672 (2014).
16.J. C. Wang, P. C. Chou, C. S. Lai, J. Y. Lin, W. C. Chang, H. C. Lu, C. I. Wu, and P. S. Wang, J. Electrochem. Soc. 158, H502 (2011).
17.P. Y. Kuei and C. C. Hu, Appl. Surf. Sci. 254, 5487 (2008).
18.G. Lucovsky, J. W. Kim, and D. Nordlund, Microelectron. Eng. 109, 370 (2013).
19.S. Shibayama, K. Kato, M. Sakashita, W. Takeuchi, N. Taoka, O. Nakatsuka, and S. Zaim, Thin Solid Films 557, 282 (2014).
20.S. Van Elshocht, M. Caymax, T. Conard, S. De Gendt, I. Hoflijk, M. Houssa, B. De Jaeger, J. Van Steenbergen, M. Heyns, and M. Meuris, Appl. Phys. Lett. 88, 141904 (2006).
21.M. M. Yang, H. L. Tu, J. Du, F. Wei, Y. H. Xiong, and H. B. Zhao, J. Rare. Earth. 31, 395 (2013).
22.P. S. Kang, J. C. Woo, Y. H. Joo, and C. I. Kim, Vacuum 93, 50 (2013).
23.O. Renault, L. Fourdrinier, E. Martinez, L. Clavelier, and C. Leroyer, Appl. Phys. Lett. 90, 052112 (2007).
24.S. Van Elshocht, B. Brijs, M. Caymax, T. Conard, T. Chiarella, S. De Gendt, B. De Jaeger, S. Kubicek, M. Meuris, B. Onsia, O. Richard, I. Teerlinck, J. Van Steenbergen, C. Zhao, and M. Heyns, Appl. Phys. Lett. 85, 3824 (2006).
25.R. Konda, C. White, D. Thomas, Q. Yang, and A. Pradhan, J. Vac. Sci. Technol. A 31, 041505 (2013).
26.C. Ye, C. Zhan, J.Q. Zhang, H. Wang, T.F. Deng, and S.R. Tang, Microelectron. Reliab. 54, 388 (2014).
27.W. Zhang, Y. Cui, Z. G. Hu, W. L. Yu, J. Sun, N. Xu, Z. F. Ying, and J. D. Wu, Thin Solid Films 520, 6361 (2012).
28.G. He, J. Gao, H. S. Chen, J. B. Cui, Z. Q. Sun, and X. S. Chen, ACS Appl. Mater. Interfaces. 6, 22013 (2014).
29.K. C. Lina, J. Y. Chen, H. W. Hsu, H. W. Chen, and C. H. Liu, Solid-State Lett. 77, 7 (2012).
30.T. Kamimura, K. Sasaki, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014).
31.W. Zhu, T. Ma, T. Tamagawa, J. Kim, and Y. Di, IEEE Electron Device Lett. 23, 97 (2002).
32.P. M. Tirmali, Anil G. Khairnar, Bhavana N. Joshi, and A. M. Mahajan, Solid-State Electron. 62, 44 (2011).
33.A. Rose, Phys. Rev. 97, 1538 (1955).
34.L. P. Feng, N. L. Hao Tian, and Z. T. Liu, J. Mater. Sci. 49, 1875 (2014).

Data & Media loading...


Article metrics loading...



In current work, effects of rapid thermal annealing (RTA) on the interface chemistry and electrical properties of Gd-doped HfO (HGO)/Ge stack have been investigated systematically. It has been demonstrated that the presence of GeO interfacial layer between HfGdO and Ge is unavoidable and appropriate annealing can improve metal-oxide-semiconductor device characteristics such as interface state density, accumulation capacitance, frequency dispersion, and leakage current. The involved leakage current conduction mechanisms for metal-oxide-semiconductor(MOS) capacitors based on sputtered HGO/Ge gate stacks with optimal annealed temperature also have been discussed in detail. As a result, the Al/HGO barrier height and the band offset of HGO/Ge gate stack have been determined precisely.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd