Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941698
1.
1.W. H. Chang, H. Ota, and T. Maeda, Appl. Phys. Exp. 8, 054201 (2015).
http://dx.doi.org/10.7567/APEX.8.054201
2.
2.G. K. Dalapati and Y. Tong, Appl. Phys. Lett. 90, 183510 (2007).
http://dx.doi.org/10.1063/1.2732821
3.
3.C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, and A. Toriumi, Appl. Phys. Exp. 5, 114001 (2012).
http://dx.doi.org/10.1143/APEX.5.114001
4.
4.H. X. Xu, J. P. Xu, C. X. Li, and P. T. Lai, Appl. Phys. Lett. 97, 022903 (2010).
http://dx.doi.org/10.1063/1.3462301
5.
5.S. Swaminathan, Y. Sun, P. Pianetta, and Paul C. McInthhyre, J. Appl. Phys. 110, 094105 (2011).
http://dx.doi.org/10.1063/1.3647761
6.
6.C. A. Lin, H. C. Lin, T. H. Chiang, R. L. Chu, L. K. Chu, T. D. Lin, Y. C. Chang, W. E. Wang, J. R. Kwo, and M. W. Hong, Appl. Phys. Exp. 4, 111101 (2011).
http://dx.doi.org/10.1143/APEX.4.111101
7.
7.Q. Xie, S. R. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X. P. Qu, Y. L. Jiang, D. Deduytsche, and C. Detavernier, Semicond. Sci. Technol. 27, 074012 (2012).
http://dx.doi.org/10.1088/0268-1242/27/7/074012
8.
8.H. H. Wei, G. He, M. Liu, M. Zhang, X. S. Chen, and Z. Q. Sun, Sci. Adv Mater 6, 2652 (2014).
http://dx.doi.org/10.1166/sam.2014.1979
9.
9.G. He, X. S. Chen, and Z. Q. Sun, Sur. Sci. Rep. 68, 68 (2013).
http://dx.doi.org/10.1016/j.surfrep.2013.01.002
10.
10.G. He, L. Q. Zhu, Q. Wang, and L. D. Zhang, Prog. Mater Sci. 56, 475 (2011).
http://dx.doi.org/10.1016/j.pmatsci.2011.01.012
11.
11.Y. H. Xiong, H. L. Tu, J. Du, M. Ji, X. Q. Zhang, and L. Wang, Appl. Phys. Lett. 97, 012901 (2010).
http://dx.doi.org/10.1063/1.3460277
12.
12.Y. H. Xiong, H. L. Tu, J. Du, X. Q. Zhang, D. P. Chen, and W. W. Wang, Appl. Phys. Lett. 98, 082906 (2011).
http://dx.doi.org/10.1063/1.3556652
13.
13.X. Q. Zhang, H. L. Tu, Y. W. Guo, H. B. Zhao, M. M. Yang, F. Wei, Y. H. Xiong, Z. M. Yang, J. Du, and W. W. Wang, J. Appl. Phys. 111, 014102 (2012).
http://dx.doi.org/10.1063/1.3672415
14.
14.Y. H. Xiong, H. L. Tu, J. Du, L. G. Wang, F. Wei, X. Q. Chen, M. M Yang, H. B. Zhao, D. P. Chen, and W. W. Wang, Phys. Status Solidi B 251, 1635 (2014).
http://dx.doi.org/10.1002/pssb.201451303
15.
15.H. H. Wei, G. He, J. Gao, M. Liu, X. S. Chen, and Z. Q. Sun, J. Alloys Comp. 615, 672 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.07.025
16.
16.J. C. Wang, P. C. Chou, C. S. Lai, J. Y. Lin, W. C. Chang, H. C. Lu, C. I. Wu, and P. S. Wang, J. Electrochem. Soc. 158, H502 (2011).
http://dx.doi.org/10.1149/1.3554738
17.
17.P. Y. Kuei and C. C. Hu, Appl. Surf. Sci. 254, 5487 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.02.115
18.
18.G. Lucovsky, J. W. Kim, and D. Nordlund, Microelectron. Eng. 109, 370 (2013).
http://dx.doi.org/10.1016/j.mee.2013.03.031
19.
19.S. Shibayama, K. Kato, M. Sakashita, W. Takeuchi, N. Taoka, O. Nakatsuka, and S. Zaim, Thin Solid Films 557, 282 (2014).
http://dx.doi.org/10.1016/j.tsf.2013.10.084
20.
20.S. Van Elshocht, M. Caymax, T. Conard, S. De Gendt, I. Hoflijk, M. Houssa, B. De Jaeger, J. Van Steenbergen, M. Heyns, and M. Meuris, Appl. Phys. Lett. 88, 141904 (2006).
http://dx.doi.org/10.1063/1.2192576
21.
21.M. M. Yang, H. L. Tu, J. Du, F. Wei, Y. H. Xiong, and H. B. Zhao, J. Rare. Earth. 31, 395 (2013).
http://dx.doi.org/10.1016/S1002-0721(12)60293-2
22.
22.P. S. Kang, J. C. Woo, Y. H. Joo, and C. I. Kim, Vacuum 93, 50 (2013).
http://dx.doi.org/10.1016/j.vacuum.2012.12.007
23.
23.O. Renault, L. Fourdrinier, E. Martinez, L. Clavelier, and C. Leroyer, Appl. Phys. Lett. 90, 052112 (2007).
http://dx.doi.org/10.1063/1.2435512
24.
24.S. Van Elshocht, B. Brijs, M. Caymax, T. Conard, T. Chiarella, S. De Gendt, B. De Jaeger, S. Kubicek, M. Meuris, B. Onsia, O. Richard, I. Teerlinck, J. Van Steenbergen, C. Zhao, and M. Heyns, Appl. Phys. Lett. 85, 3824 (2006).
http://dx.doi.org/10.1063/1.1810642
25.
25.R. Konda, C. White, D. Thomas, Q. Yang, and A. Pradhan, J. Vac. Sci. Technol. A 31, 041505 (2013).
http://dx.doi.org/10.1116/1.4807732
26.
26.C. Ye, C. Zhan, J.Q. Zhang, H. Wang, T.F. Deng, and S.R. Tang, Microelectron. Reliab. 54, 388 (2014).
http://dx.doi.org/10.1016/j.microrel.2013.10.014
27.
27.W. Zhang, Y. Cui, Z. G. Hu, W. L. Yu, J. Sun, N. Xu, Z. F. Ying, and J. D. Wu, Thin Solid Films 520, 6361 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.06.042
28.
28.G. He, J. Gao, H. S. Chen, J. B. Cui, Z. Q. Sun, and X. S. Chen, ACS Appl. Mater. Interfaces. 6, 22013 (2014).
http://dx.doi.org/10.1021/am506351u
29.
29.K. C. Lina, J. Y. Chen, H. W. Hsu, H. W. Chen, and C. H. Liu, Solid-State Lett. 77, 7 (2012).
30.
30.T. Kamimura, K. Sasaki, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014).
http://dx.doi.org/10.1063/1.4876920
31.
31.W. Zhu, T. Ma, T. Tamagawa, J. Kim, and Y. Di, IEEE Electron Device Lett. 23, 97 (2002).
http://dx.doi.org/10.1109/55.981318
32.
32.P. M. Tirmali, Anil G. Khairnar, Bhavana N. Joshi, and A. M. Mahajan, Solid-State Electron. 62, 44 (2011).
http://dx.doi.org/10.1016/j.sse.2011.04.009
33.
33.A. Rose, Phys. Rev. 97, 1538 (1955).
http://dx.doi.org/10.1103/PhysRev.97.1538
34.
34.L. P. Feng, N. L. Hao Tian, and Z. T. Liu, J. Mater. Sci. 49, 1875 (2014).
http://dx.doi.org/10.1007/s10853-013-7876-6
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941698
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941698
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941698
2016-02-04
2016-12-10

Abstract

In current work, effects of rapid thermal annealing (RTA) on the interface chemistry and electrical properties of Gd-doped HfO (HGO)/Ge stack have been investigated systematically. It has been demonstrated that the presence of GeO interfacial layer between HfGdO and Ge is unavoidable and appropriate annealing can improve metal-oxide-semiconductor device characteristics such as interface state density, accumulation capacitance, frequency dispersion, and leakage current. The involved leakage current conduction mechanisms for metal-oxide-semiconductor(MOS) capacitors based on sputtered HGO/Ge gate stacks with optimal annealed temperature also have been discussed in detail. As a result, the Al/HGO barrier height and the band offset of HGO/Ge gate stack have been determined precisely.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941698.html;jsessionid=eiMRZz_Myo08VEjER0-uqFb7.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941698&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941698&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941698'
Right1,Right2,Right3,