Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941751
1.
1.J.-M. Koo, S. Im, L. Jiang, and K. E. Goodson, J. Heat Trans. 127(1), 49-58 (2005).
http://dx.doi.org/10.1115/1.1839582
2.
2.E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, Nat. Photonics 3(9), 514-517 (2009).
http://dx.doi.org/10.1038/nphoton.2009.144
3.
3.L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, Nanosc. Microsc. Therm. 19(2), 127-165 (2015).
http://dx.doi.org/10.1080/15567265.2015.1031857
4.
4.D. Polder and M. Van Hove, Phys. Rev. B 4(10), 3303-3314 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.3303
5.
5.X. Liu, L. Wang, and Z. M. Zhang, Nanosc. Microsc. Therm. 19(2), 98-126 (2015).
http://dx.doi.org/10.1080/15567265.2015.1027836
6.
6.K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, Surf. Sci. Rep. 57(3–4), 59-112 (2005).
http://dx.doi.org/10.1016/j.surfrep.2004.12.002
7.
7.P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107(11), 114301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.114301
8.
8.P. Ben-Abdallah, R. Messina, S.-A. Biehs, M. Tschikin, K. Joulain, and C. Henkel, Phys. Rev. Lett. 111(17), 174301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.174301
9.
9.R. Messina, M. Antezza, and P. Ben-Abdallah, Phys. Rev. Lett. 109(24), 244302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.244302
10.
10.I. Latella, A. Pérez-Madrid, J. M. Rubi, S.-A. Biehs, and P. Ben-Abdallah, Phys. Rev. Appl. 4(1), 011001 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.4.011001
11.
11.I. Roberta, E. Thorsten, and K. Matthias, EPL (Europhysics Letters) 106(4), 41001 (2014).
http://dx.doi.org/10.1209/0295-5075/106/41001
12.
12.M. Nikbakht, J. Appl. Phys. 116(9), 094307 (2014).
http://dx.doi.org/10.1063/1.4894622
13.
13.O. Huth, F. Rüting, S.-A. Biehs, and M. Holthaus, Eur. Phys. J. Appl. Phys. 50(1), 10603 (2010).
http://dx.doi.org/10.1051/epjap/2010027
14.
14.Y. Zheng and A. Ghanekar, J. Appl. Phys. 117(6), 064314 (2015).
http://dx.doi.org/10.1063/1.4907913
15.
15.L. Gao, C. Zhang, C. Li, and L. V. Wang, Appl. Phys. Lett. 102(19), 193705 (2013).
http://dx.doi.org/10.1063/1.4807140
16.
16.S. I. Maslovski, C. R. Simovski, and S. A. Tretyakov, Phys. Rev. B 87(15), 155124 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.155124
17.
17.R. Messina, M. Tschikin, S.-A. Biehs, and P. Ben-Abdallah, Phys. Rev. B 88(10), 104307 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.104307
18.
18.P. J. van Zwol, L. Ranno, and J. Chevrier, Phys. Rev. Lett. 108(23), 234301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.234301
19.
19.S. Edalatpour and M. Francoeur, J. Quant. Spectrosc. Radiat. Transfer 133, 364-373 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.08.021
20.
20.S.-A. Biehs and G. S. Agarwal, J. Opt. Soc. Am. B 30(3), 700-707 (2013).
http://dx.doi.org/10.1364/JOSAB.30.000700
21.
21.T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, Phys. Rev. Lett. 109(22), 224302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.224302
22.
22.R. St-Gelais, B. Guha, L. Zhu, S. Fan, and M. Lipson, Nano Lett. 14(12), 6971-6975 (2014).
http://dx.doi.org/10.1021/nl503236k
23.
23.B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, Nat. Nanotechnol. 10(3), 253-258 (2015).
http://dx.doi.org/10.1038/nnano.2015.6
24.
24.S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909 (2009).
http://dx.doi.org/10.1021/nl901208v
25.
25.R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, Phys. Rev. Lett. 107(1), 014301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.014301
26.
26.L. Worbes, D. Hellmann, and A. Kittel, Phys. Rev. Lett. 110(13), 134302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.134302
27.
27.J. Shi, B. Liu, P. Li, L. Y. Ng, and S. Shen, Nano Lett. 15(2), 1217-1221 (2015).
http://dx.doi.org/10.1021/nl504332t
28.
28.M. Tschikin, S. A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, Euro. Phys. J. B 85(7), 1-8 (2012).
http://dx.doi.org/10.1140/epjb/e2012-30219-7
29.
29.V. Yannopapas and N. V. Vitanov, Phys. Rev. Lett. 110(4), 044302 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.044302
30.
30.V. Yannopapas, J. Phys. Chem. C 117(27), 14183-14188 (2013).
http://dx.doi.org/10.1021/jp4033639
31.
31.Y. Wu, L. Zhou, X. Du, and Y. Yang, Int. J. Heat Mass Transf. 82, 545-554 (2015).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.11.026
32.
32.Z. Li, J. Nan, X. Zhang, S. Ye, H. Shen, S. Wang, L. Fang, P. Xue, J. Zhang, and B. Yang, J. Phys. Chem. C 119(21), 11839-11845 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b02263
33.
33.J. P. Meyer, S. A. Adio, M. Sharifpur, and P. N. Nwosu, Heat Transfer Eng. 37(5), 387-421 (2016).
http://dx.doi.org/10.1080/01457632.2015.1057447
34.
34.V. Sridhara and L. N. Satapathy, Crit Rev Solid State Mater Sci 40(6), 399-424 (2015).
http://dx.doi.org/10.1080/10408436.2015.1068159
35.
35.E. P. Bandarra Filho, O. S. H. Mendoza, C. L. L. Beicker, A. Menezes, and D. Wen, Energy Convers Manag 84, 261-267 (2014).
http://dx.doi.org/10.1016/j.enconman.2014.04.009
36.
36.A. Shirdel-Havar and R. M. Saadabad, J. Appl. Phys. 117(11), 114304 (2015).
http://dx.doi.org/10.1063/1.4914956
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941751
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941751
2016-02-05
2016-09-26

Abstract

Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941751.html;jsessionid=g4_XpaAB77E9t9SOY1GZ90YS.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941751&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941751&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941751'
Right1,Right2,Right3,