Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941752
1.
1.M. Kund, G. Beitel, C.- U. Pinnow, T. Röhr, J. Schumann, R. Symanczyk, K.-D. Ufert, and G. Müller, In. IEDM Tech. Dig. 754 (2005).
2.
2.M. Tada, T. Sakamoto, Y. Tsuji, N. Banno, Y. Saito, Y. Yabe, S. Ishida, M. Terai, S. Kotsuji, N. Iguchi, M. Aono, H. Hada, and N. Kasai, In. IEDM Tech. Dig. 943 (2009).
3.
3.Y.-Y. Lin, F.-M. Lee, Y.-C. Chen, W.-C. Chien, C.-W. Yeh, K.-Y. Hsieh, and C.-Y. Lu, In.VLSL Symp. Tech. Dig. 91 (2010).
4.
4.D. Jana, S. Roy, R. Panja, M. Dutta, S. Z. Rahaman, R. Mahapatra, and S. Maikap, Nanoscale Res. Lett. 10, 188 (2015).
http://dx.doi.org/10.1186/s11671-015-0880-9
5.
5.S. Yu and H.-S. Philip Wong, IEEE Trans. Electron Dev. 58, 1352 (2011).
http://dx.doi.org/10.1109/TED.2011.2116120
6.
6.R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
7.
7.S. Lim, S. Lee, J. Woo, D. Lee, A. Prakash, and H. Hwang, ECS Solid state Lett. 4, Q25 (2015).
http://dx.doi.org/10.1149/2.0011507ssl
8.
8.H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng, C.-H. Lin, L.-S. Lee, and M.-J Tsai, Jpn. J. Appl. Phys. 46, 2175 (2007).
http://dx.doi.org/10.1143/JJAP.46.2175
9.
9.R. Symanczyk, R. Ditrich, J. Keller, M. Kund, G. Müller, B. Ruf, Q. AG, P.-H. Albarede, S. Bournat, L. Bouteille, and A. Duch, In. Proc. Nonvolatile Memory Technol. Symp. P .71 (2007).
10.
10.D. Kamalanathan, S. Baliga, S. P. Thermadam, and M. Kozicki, In. Proc. Nonvolatile memory Technol. Symp. 91 (2007).
11.
11.D. Ielmini, F. Nardi, C. Cagli, and A. L. Lacaita, IEEE Electron Dev. Lett. 31, 353 (2010).
http://dx.doi.org/10.1109/LED.2010.2040799
12.
12.S. Choi, Y. Yang, and W. Lu, Nanoscale 6, 400 (2014).
http://dx.doi.org/10.1039/C3NR05016E
13.
13.S. Yu, Y. Y. Chen, X. Guan, H.-S. Philip Wong, and J. A. Kittl, Appl. Phy. Lett. 100, 043507 (2012).
http://dx.doi.org/10.1063/1.3679610
14.
14.Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N. Raghavan, S. Clima, L. Zhang, A. Belmonte, A. Redolfi, G. S. Kar, G. Groeseneken, D. J. Wouters, and M. Jurczak, IEDM Tech. Dig. 252 (2013).
15.
15.Z. Wei, T. Ninomiya, S. Muraoka, K. Katayama, R. Yasuhara, and T. Mikawa, IITC/AMC. 349 (2014).
16.
16.B. D. Briggs, S. M. Bishop, K. D. Leedy, and N. C. Cady, Thin Solid Films 562, 519 (2014).
http://dx.doi.org/10.1016/j.tsf.2014.04.084
17.
17.S. Larentis, F. Nardi, S. Balatti, D. C. Gilmer, and D. Ielmini, IEEE Trans. Electron Dev. 59, 2468 (2012).
http://dx.doi.org/10.1109/TED.2012.2202320
18.
18.X. Xu, H. Lv, H. Liu, T. Gong, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, and M. Liu, IEEE. Electron Dev. Lett. 36, 129 (2015).
http://dx.doi.org/10.1109/LED.2014.2379961
19.
19.D. Kamalanathan, U. Russo, and D. Ielmini, IEEE Electron Dev. Lett. 30, 553 (2009).
http://dx.doi.org/10.1109/LED.2009.2016991
20.
20.N. Banno, T. Sakamota, S. Fujieda, and M. Aono, Annual Int. Reliability physics Symp. 707 (2008).
21.
21.Y. Koo, S. Ambrogio, J. Woo, J. song, D. Ielmini, and H. Hwang, IEEE Electron Dev. Lett. 36, 238 (2015).
http://dx.doi.org/10.1109/LED.2015.2394302
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941752
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941752
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941752
2016-02-05
2016-12-02

Abstract

We investigate the effect of Cu concentration On-state resistance retention characteristics of W/Cu/Ti/HfO/Pt memory cell. The development of RRAM device for application depends on the understanding of the failure mechanism and the key parameters for device optimization. In this study, we develop analytical expression for cations (Cu+) diffusionmodel using Gaussian distribution for detailed analysis of data retention time at high temperature. It is found that the improvement of data retention time depends not only on the conductive filament (CF) size but also on Cu atoms concentration density in the CF. Based on the simulation result, better data retention time is observed for electron wave function associated with Cu+ overlap and an extended state formation. This can be verified by analytical calculation of Cu atom defects inside the filament, based on Cu+diffusionmodel. The importance of Cu diffusion for the device reliability and the corresponding local temperature of the filament were analyzed by COMSOL Multiphysics simulation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941752.html;jsessionid=fDfzE6pj0xxChXV7xExDaznP.x-aip-live-06?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941752&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941752&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941752'
Right1,Right2,Right3,