Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. Moodera, L. Kinder, T. Wong, and R. Meservey, “Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions,” Phys. Rev. Lett. 74, 3273 (1995).
2.T. Miyazaki and N. Tezuka, “Giant magnetic tunneling effect in Fe/Al2O3/Fe junction,” J. Magn. Magn. Mater. 139, L231 (1995).
3.S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, and S. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers,” Nature Materials 3, 862 (2004).
4.S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions,” Nature Materials 3, 868 (2004).
5.Gang Xiao, “Magnetoresistive sensors based on magnetic tunneling junctions,” in Handbook of Spin Transport and Magnetism, edited by E. Tsymbal and I. Zutic (CRC Press, Taylor & Francis Group, Boca Raton, 2012), Chap. 34.
6.See reviews in IBM Journal of Research and Development, January 2006.
7.S.A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: a spin-based electronics vision for the future,” Science 294, 1488 (2001).
8.S. Gider, B.-U. Runge, A. C. Marley, and S. S. P. Parkin, “The magnetic stability of spin-dependent tunneling devices,” Science 281, 797 (1998).
9.M. R. McCartney, R. E. Dunin-Borkowski, M. R. Scheinfein, D. J. Smith, S. Gider, and S. S. P. Parkin, “Origin of magentization decay in spin-dependent tunneling junctions,” Science 286, 1337 (1999).
10.L. Thomas, J. Lüning, A. Scholl, F. Nolting, S. Anders, J. Stöhr, and S. S. P. Parkin, “Oscillatory decay of magnetization induced by domain-wall stray fields,” Phys. Rev. Lett. 84, 3462 (2000).
11.L. Thomas, M. G. Samant, and S. S. P. Parkin, “Domain-wall induced coupling between ferromagnetic layers,” Phys. Rev. Lett. 84, 1816 (2000).
12.J. Schmalhorst, H. Brückl, G. Reiss, R. Kinder, G. Gieres, and J. Wecker, “Switching stability of magnetic tunnel junctions with an artificial antiferromagnet,” Appl. Phys. Lett. 77, 3456 (2000).
13.O. Lenoble, M. Hehn, D. Lacour, A. Schuhl, D. Hrabovsky, J. F. Bobo, B. Diouf, and A. R. Fert, “Domain duplication in magnetic tunnel junctions studied by Kerr microscopy,” Phys. Rev. B 63, 052409 (2001).
14.B. D. Schrag, A. Anguelouch, S. Ingvarsson, Gang Xiao, Yu Lu, P. L. Trouilloud, A. Gupta, R. A. Wanner, W. J. Gallagher, P. M. Rice, and S. S. P. Parkin, “Neel ‘orange-peel’ coupling in magnetic tunneling junction devices,” Appl. Phys. Lett. 77, 2373 (2000).
15.A. Inomata, J. S. Jiang, C.-Y. You, J. E. Pearson, and S. D. Bader, “Magnetic stability of novel exchange coupled systems,” Journal of Vacuum Science & Technology A 18, 1269 (2000).
16.J. S. Jiang, A. Inomata, C.-Y. You, J. E. Pearson, and S. D. Bader, “Magnetic stability in exchange-spring and exchange-bias systems after multiple switching cycles,” J. Appl. Phys. 89, 6817 (2001).
17.Chun-Yeol You and S. D. Bader, “Enhancement of switching stability of tunneling magnetoresistance systems with artificial ferrimagnets,” J. Appl. Phys. 92, 3886 (2002).
18.Hyun Soon Park, J. Spencer Baskin, and Ahmed H. Zewail, “4D Lorentz electron microscopy imaging: magnetic domain wall nucleation, reversal, and wave velocity,” Nano Lett. 10, 3796 (2010).
19.P. Warin, T. N. Tran Thi, P. dePerson, M. Jamet, C. Beigne, and Y. Samson, “Hard layer demagnetization by soft layer cycling in a MgO-based perpendicular magnetic tunnel junction,” J. Magn. Magn. Mater. 323, 217 (2011).
20.A. Cousins, G. L. Balalis, S. K. Thompson, D. Forero Morales, A. Mohtar, A. B. Wedding, and B. Thierry, “Novel handheld magnetometer probe based on magnetic tunneling junction sensors for intraoperative sentinel Lymph node identification,” Scientific Reports 5, 10842 (2015).
21.M. L. Chan, G. Jaramillo, K.R. Hristova, and D.A. Horsley, “Magnetic scanometric DNA microarray detection of methyl tertiary butyl ether degrading bacteria for environmental monitoring,” Biosensors and Bioelectronics 26, 2060 (2011).
22.E. A. Lima, A. C. Bruno, H. R. Carvalho, and B. P. Weiss, “Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields,” Measurement Science and Technology 25, 105401 (2014).
23.G. Jaramillo, M. L. Chan, J.O. Milewski, and R.D. Horsley, “Ferrite Scanning Microscope Based on Magnetic Tunnel Junction Sensor Ferrite Scanning Microscope Based on Magnetic Tunnel Junction Sensor,” IEEE Trans. Magnetics 48, 3677 (2015).
24.H. Maehara et al., “High Q factor over 3000 due to out-of-plane precession in nano-contact spin-torque oscillator based on magnetic tunnel junctions,” Appl. Phys. EXPRESS 7, 023003 (2014).
25.D. W. Guo, F. A. Cardoso, R. Ferreira, E. Paz, S. Cardoso, and P. P. Freitas, “MgO-based magnetic tunnel junction sensors array for non-destructive testing applications,” J. Appl. Phys. 115, 17E513 (2014).
26.J. Sánchez, D. Ramírez, S.I. Ravelo, A. Lopes, S. Cardoso, R. Ferreira, and P.P. Freitas, “Electrical characterization of a magnetic tunnel junction current sensor for industrial applications,” IEEE Trans. Magn. 48, 2823 (2012).
27.S. H. Liou, X. L. Yin, S. E. Russek, R. Heindl, F. C. S. Da Silva, J. Moreland, D. P. Pappas, L. Yuan, and J. Shen, “Picotesla magnetic sensors for low-frequency applications,” IEEE Trans. Magn. 47, 3740 (2011).

Data & Media loading...


Article metrics loading...



We investigate the magnetic stability and endurance of MgO-based magnetic tunnel junctions(MTJs) with an exchange-biased synthetic antiferromagnetic(SAF) pinned layer. When a uniaxially cycling switching field is applied along the easy axis of the free magnetic layer, the magnetoresistance varies only by 1.7% logarithmically with the number of cycles, while no such change appears in the case of a rotating field. This observation is consistent with the effect of the formation and motion of domain walls in the free layer, which create significant stray fields within the pinned hard layer. Unlike in previous studies, the decay we observed only occurs during the first few starting cycles (<20), at which point there is no further variance in all performance parameters up to 107 cycles. Exchange-biased SAF structure is ideally suited for solid-state magnetic sensors and magnetic memory devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd