Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X. Zhang, J. Zhang, Z. Dong, J. Shi, and M. Gong, “Concentration quenching of Eu2+ in a thermal-stable yellow phosphor Ca2BO3Cl:Eu2+ for LED application,” J. Lumin. 132, 914918 (2012).
2.L. L. Noto, S. S. Pitale, M. A. Gusowki, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Afterglow enhancement with In3+ co-doping in CaTiO3:Pr3+ red phosphor,” Powder Technol. 237, 141146 (2013).
3.B. M. Van der Ende, L Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys. 11, 1108111095 (2009).
4.T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys. 92, 16681674 (2002).
5.X. Huang, S. Han, W. Huang, and X. Liu, “Enhancing solar cell efficiency: the search for luminescent materials as spectral converters,” Chem. Soc. Rev. 42, 173201 (2013).
6.G. Gao and L. Wondraczek, “Near-infrared downconversion in Pr3+/Y b3+ co-doped boro-aluminosilicate glasses and LaBO3 glass ceramics,” Opt. Mater. Express 3, 633644 (2013).
7.B. M. Van der Ende, L Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. 21, 30733077 (2009).
8.A. Guille, A. Pereira, G. Breton, A. Bensalah-ledoux, and B. Moine, “Energy transfer in CaYAlO4: Ce3+, Pr3+ for sensitization of quantum cutting with the Pr3+-Yb3+ couple,” J. Appl. Phys. 111, 043104043108 (2012).
9.P. Dorenbos, “Energy of the first 4f7 → 4f65d transition of Eu2+ in inorganic compounds,” J. Lumin. 104, 239260 (2003).
10.M.Y.A Yagoub, H. C Swart, L. L Noto, J. H. O’Connell, M. E Lee, and E. Coetsee, “The effects of Eu-concentrations on the luminescent properties of SrF2 : Eu nanophosphor,” J. Lumin. 156, 150156 (2014).
11.R. L. Nyenge, H. C. Swart, D. Poelman, P. F. Smet, L. I. D. J. Martin, L. L. Noto, S. Som, and O. M. Ntwaeaborwa, “Thermal quenching, cathodoluminescence and thermoluminescence study of Eu2+ doped CaS powder,” J. Alloys Comp. 657, 787793 (2016).
12.W. Xu, Q. Yan, Jing Ren, and G. Chen, “Photoluminescence properties and energy transfer of Eu2+/Pr3+ codoped GeS2–Ga2S3–CsCl chalcohalide glasses,” J. Lumin. 134, 7578 (2013).
13.Y. Chen, J. Wang, C. Liu, J. Tang, X. Kuang, M. Wu, and Q. Su, “UV-Vis-NIR luminescence properties and energy transfer mechanism of LiSrPO4 : Eu2+, Pr3+ suitable for solar spectral convertor,” Optics Express. 21, 31613169 (2013).
14.M.Y.A. Yagoub, H.C. Swart, and E. Coetsee, “Concentration quenching, surface and spectral analyses of SrF2 : Pr3+ prepared by different synthesis techniques,” Opt. Mater. 42, 204209 (2015).
15.M. Laroche, S. Girard, J. Margerie, R. Moncorg, M. Bettinelli, and E. Cavalli, “Experimental and theoretical investigation of the 4fn − 4fn−15d transitions in YPO4 : Pr3+ and YPO4:Pr3+, Ce3+,” J. Phys.: Condens. Matter. 13, 765776 (2001).
16.B. P. Singh, Maheshwary, P. V. Ramakrishna, S. Singh, V. K. Sonu, Santosh Singh, P. Singh, A. Bahadur, R. A. Singh, and S. B. Rai, “Improved photo-luminescence behaviour of Eu3+ activated CaMoO4 nanoparticles via Zn2+ incorporation,” RSC Adv. 5, 5597755985 (2015).
17.A. K. Parchur, and R. S. Ningthoujam, “Preparation and structure refinement of Eu3+ doped CaMoO4 nanoparticles,” Dalton Trans. 40, 75907594 (2011).
18.A. K. Parchur and R. S. Ningthoujam, “Preparation, microstructure and crystal structure studies of Li+ co-doped YPO4 : Eu3+,” RSC Adv. 2, 1085410858 (2012).
19.R. Vercaemst, D. Poelman, L. Fiermans, R. L. Van Meirhaeghe, W. H. Laflere, and F. Cardon, “A detailed XPS study of the rare earth compounds EuS and EuF3,” J. Electron. Spectrosc. Relat. Phenom. 74, 4556 (1995).
20.S. P. Kowalczyk, N. Edelstein, F. R. McFeely, L. Ley, and D. A. Shirly, “X-ray photoemission spectra of the 4d levels in rare-earth metals,” Chem. Phys. Lett. 29, 491495 (1974).
21.L. L. Noto, W. D. Roos, O. M. Ntwaeaborwa, M. Gohain, M. Y. A. Yagoub, E. Coetsee, and H. C. Swart, “The role of flux material on the enhancing of the luminescent intensity and persistent emission of ZnTa2O6 : Pr3+ Phosphor,” Sci. Adv. Mater. 7, 110 (2015).
22.R. Vercaemst, D. Poelman, R. L. Van Meirhaeghe, L. Fiermans, W. H. Laflere, and F. Cardon, “An XPS study of the dopants’ valence states and the composition of CaS1−xSex : Eu and SrS1−xSex : Ce thin film electroluminescent devices,” J. Lumin. 63, 1930 (1995).
23.D. Lu, M. Sugano, X.Y. Sun, and W. Su, “X-ray photoelectron spectroscopy study on Ba1−xEuxTiO3,” Appl. Surf. Sci. 242, 318325 (2005).
24.J. Zhang, M. Yang, H. Jin, X. Wang, X. Zhao, X. Liu, and L. Peng, “Self-assembly of LaBO3 : Eu twin microspheres synthesized by a facile hydrothermal process and their tunable luminescence properties,” Mater. Res. Bull. 47, 247252 (2012).
25.H. Ogasawara, A. Kotani, R. Potze, G. A. Sawatzky, and B.T. Thole, “Praseodymium 3d- and 4d-core photoemission spectra of Pr2O3,” Phys. Rev. B. 44, 54655469 (1999).
26.J. Gurgul, M. T. Rinke, I. Schellenberg, and R. Pottgen, “The antimonide oxides REZnSbO and REMnSbO (RE = Ce, Pr) – An XPS study,” Solid state Sci. 17, 122127 (2013).
27.S.W. Han, J.D. Lee, K.H. Kim, H. Song, W.J. Kim, S.J. Kwon, H.G. Lee, C. Hwang, J.L. Jeong, and J.S. Kang, “Electronic structures of the CMR perovskites R1−xAxMnO3 (R = La, Pr; A = Ca, Sr, Ce) using photoelectron spectroscopy,” J. Korean Phys. Soc. 40, 501510 (2002).
28.P. J. Bendell, C. R. A. Catlow, J. Corish, and P. W. M. Jacobs, “Defect aggregation in anion-excess fluorites II. Clusters containing more than two impurity atoms,” J. solid state Chem. 51, 159169 (1984).
29.D. R. Tallant, D. S. Moore, and J. C. Wright, “Defect equilibria in fluorite structure crystals,” J. Chem. Phys. 67, 28972907 (1977).
30.J. Zhou, Z. Xia, H. You, K. Shen, M. Yang, and L. Liao, “Synthesis and tunable luminescence properties of Eu2+ and Tb3+-activated Na2Ca4(PO4)3F phosphors based on energy transfer,” J. of Lumin. 135, 2025 (2013).
31.Q. Luo, X. Qiao, and X. Fan, “Luminescence properties of Eu2+-doped glass ceramics containing SrF2 nanocrystals,” J. Am. Ceram. Soc. 93, 26842688 (2010).
32.T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, and T. Morikawa, “Effects of composition on the long Phosphorescent SrAl2O4 : Eu2+, Dy3+ phosphor crystals,” J. Electrochem. Soc. 144, L243-L245 (1997).
33.R. Naccache, F. Vetrone, A. Speghnini, M. Bettinelli, and J. A. Capobianco, “Cross-relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Y b3+ co-doped nanocrystalline Gd3Ga5O12: The sensitizer/activator relationship,” J. Phys. Chem. C. 112, 77507756 (2008).
34.X. Wu, W. M. Dennis, and W. M. Yen, “Temperature dependence of cross-relaxation processes in Pr3+-doped yttrium aluminum garnet,” Phys. Rev. B. 50, 65896595 (1994).
35.P. J. Deren, A. Bednarkiewicz, R. Mahiqu, and W. Strek, “On spectroscopic properties of the KYb(WO4)2:Pr3+ crystal,” Mol. Phys. 101, 951960 (2003).

Data & Media loading...


Article metrics loading...



Efficient energy transfer was demonstrated in the SrF : Eu2+, Pr3+phosphor synthesized by the co-precipitation method. Results obtained with X-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray spectroscopy (XPS), photoluminescence (PL) and decay curves proposed the UV-Vis energy transfer process. The energy transfer process between the Eu2+ and Pr3+ ions in SrF was investigated to evaluate the potential of the Eu2+ ion as a sensitizer for the Pr3+ ion. The results proposed that Eu2+ could be a good sensitizer for absorbing the UV photons and efficiently enhancing the Pr3+ emission intensity. The energy transfer process was effective until concentration quenching for the Pr3+ ions occurred. The concentration quenching was attributed to cross-relaxation between the Pr3+ ions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd