Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4941839
1.
1.F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. and Eng. R. 83, 1 (2014).
http://dx.doi.org/10.1016/j.mser.2014.06.002
2.
2.R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mat. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
3.
3.K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnol. 22, 254002 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254002
4.
4.Y.C. Yang and W. Lu, Nanoscale. 5, 10076 (2013).
http://dx.doi.org/10.1039/c3nr03472k
5.
5.E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403 (2010).
http://dx.doi.org/10.1038/nmat2748
6.
6.Z. Fang, X.P. Wang, X. Li, Z. X. Chen, A. Kamath, G. O. Lo, and D. L. Kwong, IEEE T. Electron Dev. 60, 1108 (2013).
http://dx.doi.org/10.1109/TED.2013.2240389
7.
7.M.C. Wu, W.Y. Jang, C.H. Lin, and T.Y. Tseng, Semicond. Sci.Technol. 27, 065010 (2012).
http://dx.doi.org/10.1088/0268-1242/27/6/065010
8.
8.Y. T. Li, H. B. Lv, Q. Liu, S. B. Long, M. Wang, H. W. Xie, K. W. Zhang, Z. L. Huo, and M. Liu, Nanoscale 5, 4785 (2013).
http://dx.doi.org/10.1039/c3nr33370a
9.
9.G. H. Kim, J. H. Lee, Y. Ahn, W. Jeon, S. J. Song, J. Y. Seok, J. H. Yoon, K. J. Yoon, and C. S. Hwang, Adv. Funct. Mater. 23, 1440 (2013).
http://dx.doi.org/10.1002/adfm.201202170
10.
10.W. Lee, J. Park, S. Kim, J. Woo, J. Shin, G. Choi, S. Park, D. Lee, E. Cha, B. H. Lee, and H. Hwang, ACS Nano 6, 8166 (2012).
http://dx.doi.org/10.1021/nn3028776
11.
11.J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, J. Appl. Phys. 109, 033712 (2011).
http://dx.doi.org/10.1063/1.3544205
12.
12.Y. C. Yang, P. Sheridan, and W. Lu, Appl. Phys. Lett. 100, 203112 (2012).
http://dx.doi.org/10.1063/1.4719198
13.
13.S. Balatti, S. Larentis, D. C. Gilmer, and D. Lelmini, Adv. Mater. 25, 1474 (2013).
http://dx.doi.org/10.1002/adma.201204097
14.
14.G. S. Tang, F. Zeng, C. Chen, H.Y. Liu, S. Gao, C. Song, Y. S. Lin, G. Chen, and F. Pan, Nanoscale 5, 422 (2013).
http://dx.doi.org/10.1039/C2NR32743K
15.
15.S. Gao, F. Zeng, M. J. Wang, G. Y. Wang, C. Song, and F. Pan, Phys. Chem. Chem. Phys. 17, 12849 (2015).
http://dx.doi.org/10.1039/C5CP01235J
16.
16.S. Park, S. Jung, M. Siddik, M. Jo, J. Park, S. Kim, W. Lee, J. Shin, D. Lee, G. Choi, J. Woo, E. Cha, B. H. Lee, and H. Hwang, Phys. Status. Solidi-R. 6, 454 (2012).
http://dx.doi.org/10.1002/pssr.201206382
17.
17.W. J. Liu, X. A. Tran, H. Y. Yu, and X. W. Sun, ECS Solid State Lett. 2(5), Q35 (2013).
http://dx.doi.org/10.1149/2.006305ssl
18.
18.X. A. Tran, W. G. Zhu, B. Gao, J. F. Kang, W.J. Liu, Z. Fang, Z. R. Wang, Y. C. Yeo, B. Y. Nguyen, M. F. Li, and H. Y. Yu, IEEE Electron Device. Lett. 33, 585 (2012).
http://dx.doi.org/10.1109/LED.2011.2181971
19.
19.X. A. Tran, B. Gao, J. F. Kang, X. Wu, L. Wu, Z. Fang, Z. R. Wang, K.L. Pey, Y.C. Yeo, A.Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, IEEE IEDM 31 (2011).
20.
20.Y.J. Dong, G. H. Yu, M.C. McAlpine, W. Lu, and C. M. Lieber, Nano Lett. 8, 386 (2008).
http://dx.doi.org/10.1021/nl073224p
21.
21.Q. Y. Zuo, S. B. Long, Q. Liu, S. Zhang, Q. Wang, Y. T. Li, Y. Wang, and M. Liu, J. Appl. Phys. 106, 073724 (2009).
http://dx.doi.org/10.1063/1.3236632
22.
22.C. Chen, F. Pan, Z. S. Wang, J. Yang, and F. Zeng, J. Appl. Phys. 111, 013702 (2012).
http://dx.doi.org/10.1063/1.3672811
23.
23.G. S. Tang, F. Zeng, C. Chen, H. Y. Liu, and S. Gao, J. Appl. Phys. 113, 244502 (2013).
http://dx.doi.org/10.1063/1.4812318
24.
24.S. Gao, F. Zeng, F. Li, M. J. Wang, H. J. Mao, G. Y. Wang, C. Song, and F. Pan, Nanoscale 7, 6031 (2015).
http://dx.doi.org/10.1039/C4NR06406B
25.
25.X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, IEEE Electron Device. Lett. 33, 1402 (2012).
http://dx.doi.org/10.1109/LED.2012.2210855
26.
26.H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, IEDM Tech. Dig. 460 (2010).
27.
27.M. Haemori, T. Nagata, and T. Chikyow, Appl. Phys. Express 2, 061401 (2009).
http://dx.doi.org/10.1143/APEX.2.061401
28.
28.C. Chen, Y. C. Yang, F. Zeng, and F. Pan, Appl. Phys. Lett. 97, 083502 (2010).
http://dx.doi.org/10.1063/1.3483158
29.
29.S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, J. Phys. Chem. C 116, 17955 (2012).
http://dx.doi.org/10.1021/jp305482c
30.
30.X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B.Y. Nguyen, and H. Y. Yu, IEEE T. Electron Dev. 60, 391 (2013).
http://dx.doi.org/10.1109/TED.2012.2223821
31.
31.Z. Wang, P. B. Griffin, J. Mcvittie, S. Wong, P. C. Mcintyre, and Y. Nishi, IEEE Electron Device. Lett. 28, 14 (2007).
http://dx.doi.org/10.1109/LED.2006.887640
32.
32.L. Shi, D. S. Shang, Y. S. Chen, J. Wang, J. R. Sun, and B. G. Shen, J. Phys. D: Appl. Phys. 44, 455305 (2011).
http://dx.doi.org/10.1088/0022-3727/44/45/455305
33.
33.W. Devulder, K. Opsomer, F. Seidel, A. Belmonte, R. Muller, B. D. Schutter, H. Bender, W. Vandervorst, S. V. Elshocht, M. Jurczak, L. Goux, and C. Detavernier, ACS Appl. Mater. Interfaces 5, 6984 (2013).
http://dx.doi.org/10.1021/am4010946
34.
34.Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Nat. Commun. 3, 732 (2012).
http://dx.doi.org/10.1038/ncomms1737
35.
35.T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, and Y. Iwashita, Appl. Phys. Lett. 99, 223517 (2011).
http://dx.doi.org/10.1063/1.3664781
36.
36.M. Wang, H. Lv, Q. Liu, Y. Li, Z. Xu, S. Long, H. Xie, K. Zhang, X. Liu, H. Sun, X. Yang, and M. Liu, IEEE Electron Device. Lett. 33, 1556 (2012).
http://dx.doi.org/10.1109/LED.2012.2211563
37.
37.T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, K. Kobayashi, and T. Chikyow, J. Mater. Res. 27, 869 (2012).
http://dx.doi.org/10.1557/jmr.2011.448
38.
38.U. Chand, K.C. Huang, C. Y. Huang, C.H. Ho, C.H. Lin, and T. Y. Tseng, J. Appl. Phys. 117, 184105 (2015).
http://dx.doi.org/10.1063/1.4921182
39.
39.S. Ban and O. Kim, Jpn. J. Appl. Phys. 53, 06JE15 (2014).
http://dx.doi.org/10.7567/JJAP.53.06JE15
40.
40.K.L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C. T. Chou, and Y. J. Lee, J. Appl. Phys. 109, 084104 (2011).
http://dx.doi.org/10.1063/1.3567915
41.
41.X. Guo, C. Schindler, S. Menzel, and R. Waser, Appl. Phys. Lett. 91, 133513 (2007).
http://dx.doi.org/10.1063/1.2793686
42.
42.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2006).
43.
43.S. Menzel, I. Valov, R. Waser, N. Adler, J. Hurk, and S. Tappertzhofen, IEEE 92 (2013).
44.
44.M. O. Aboelfotoh, A. Cros, B. G. Svensson, and K. N. Tu, Phys. Rev. B 41, 9819 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.9819
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4941839
Loading
/content/aip/journal/adva/6/2/10.1063/1.4941839
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4941839
2016-02-08
2016-09-26

Abstract

One of the most effective methods integrating self-rectifying RRAM is alleviating sneak current in crossbar architecture. In this work, to investigate RRAMs with excellent properties of self-rectifying effect, simple Cu/HfO/-Si tri-layer devices are fabricated and investigated through characteristic measurement. The experimental results demonstrate that the device exhibits forming-free behavior and a remarkable rectifying effect in low resistance state (LRS) with rectification ratio of 104 at ±1 V, as well as considerable OFF/ON ratio (resistive switching window) of 104 at 1 V. The formation and annihilation of localized Cu conductive filament plays a key role in the resistive switching between low resistance state (LRS) and high resistance state (HRS). In addition, intrinsic rectifying effect in LRS attributes to the Schottky contact between Cu filament and -Si electrode. Furthermore, satisfactory switching uniformity of cycles and devices is observed. As indicated by the results, Cu/HfO/-Si devices have a high potential for high-density storage practical application due to its excellent properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4941839.html;jsessionid=BpeVSC4SluPV4yAF_dEzbWZk.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4941839&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4941839&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4941839'
Right1,Right2,Right3,