Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. and Eng. R. 83, 1 (2014).
2.R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mat. 21, 2632 (2009).
3.K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnol. 22, 254002 (2011).
4.Y.C. Yang and W. Lu, Nanoscale. 5, 10076 (2013).
5.E. Linn, R. Rosezin, C. Kugeler, and R. Waser, Nat. Mater. 9, 403 (2010).
6.Z. Fang, X.P. Wang, X. Li, Z. X. Chen, A. Kamath, G. O. Lo, and D. L. Kwong, IEEE T. Electron Dev. 60, 1108 (2013).
7.M.C. Wu, W.Y. Jang, C.H. Lin, and T.Y. Tseng, Semicond. Sci.Technol. 27, 065010 (2012).
8.Y. T. Li, H. B. Lv, Q. Liu, S. B. Long, M. Wang, H. W. Xie, K. W. Zhang, Z. L. Huo, and M. Liu, Nanoscale 5, 4785 (2013).
9.G. H. Kim, J. H. Lee, Y. Ahn, W. Jeon, S. J. Song, J. Y. Seok, J. H. Yoon, K. J. Yoon, and C. S. Hwang, Adv. Funct. Mater. 23, 1440 (2013).
10.W. Lee, J. Park, S. Kim, J. Woo, J. Shin, G. Choi, S. Park, D. Lee, E. Cha, B. H. Lee, and H. Hwang, ACS Nano 6, 8166 (2012).
11.J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, and H. Hwang, J. Appl. Phys. 109, 033712 (2011).
12.Y. C. Yang, P. Sheridan, and W. Lu, Appl. Phys. Lett. 100, 203112 (2012).
13.S. Balatti, S. Larentis, D. C. Gilmer, and D. Lelmini, Adv. Mater. 25, 1474 (2013).
14.G. S. Tang, F. Zeng, C. Chen, H.Y. Liu, S. Gao, C. Song, Y. S. Lin, G. Chen, and F. Pan, Nanoscale 5, 422 (2013).
15.S. Gao, F. Zeng, M. J. Wang, G. Y. Wang, C. Song, and F. Pan, Phys. Chem. Chem. Phys. 17, 12849 (2015).
16.S. Park, S. Jung, M. Siddik, M. Jo, J. Park, S. Kim, W. Lee, J. Shin, D. Lee, G. Choi, J. Woo, E. Cha, B. H. Lee, and H. Hwang, Phys. Status. Solidi-R. 6, 454 (2012).
17.W. J. Liu, X. A. Tran, H. Y. Yu, and X. W. Sun, ECS Solid State Lett. 2(5), Q35 (2013).
18.X. A. Tran, W. G. Zhu, B. Gao, J. F. Kang, W.J. Liu, Z. Fang, Z. R. Wang, Y. C. Yeo, B. Y. Nguyen, M. F. Li, and H. Y. Yu, IEEE Electron Device. Lett. 33, 585 (2012).
19.X. A. Tran, B. Gao, J. F. Kang, X. Wu, L. Wu, Z. Fang, Z. R. Wang, K.L. Pey, Y.C. Yeo, A.Y. Du, M. Liu, B. Y. Nguyen, M. F. Li, and H. Y. Yu, IEEE IEDM 31 (2011).
20.Y.J. Dong, G. H. Yu, M.C. McAlpine, W. Lu, and C. M. Lieber, Nano Lett. 8, 386 (2008).
21.Q. Y. Zuo, S. B. Long, Q. Liu, S. Zhang, Q. Wang, Y. T. Li, Y. Wang, and M. Liu, J. Appl. Phys. 106, 073724 (2009).
22.C. Chen, F. Pan, Z. S. Wang, J. Yang, and F. Zeng, J. Appl. Phys. 111, 013702 (2012).
23.G. S. Tang, F. Zeng, C. Chen, H. Y. Liu, and S. Gao, J. Appl. Phys. 113, 244502 (2013).
24.S. Gao, F. Zeng, F. Li, M. J. Wang, H. J. Mao, G. Y. Wang, C. Song, and F. Pan, Nanoscale 7, 6031 (2015).
25.X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, IEEE Electron Device. Lett. 33, 1402 (2012).
26.H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu, S. M. Wang, W. H. Liu, C. H. Tsai, S. S. Sheu, P. C. Chiang, W. P. Lin, C. H. Lin, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, IEDM Tech. Dig. 460 (2010).
27.M. Haemori, T. Nagata, and T. Chikyow, Appl. Phys. Express 2, 061401 (2009).
28.C. Chen, Y. C. Yang, F. Zeng, and F. Pan, Appl. Phys. Lett. 97, 083502 (2010).
29.S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, J. Phys. Chem. C 116, 17955 (2012).
30.X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B.Y. Nguyen, and H. Y. Yu, IEEE T. Electron Dev. 60, 391 (2013).
31.Z. Wang, P. B. Griffin, J. Mcvittie, S. Wong, P. C. Mcintyre, and Y. Nishi, IEEE Electron Device. Lett. 28, 14 (2007).
32.L. Shi, D. S. Shang, Y. S. Chen, J. Wang, J. R. Sun, and B. G. Shen, J. Phys. D: Appl. Phys. 44, 455305 (2011).
33.W. Devulder, K. Opsomer, F. Seidel, A. Belmonte, R. Muller, B. D. Schutter, H. Bender, W. Vandervorst, S. V. Elshocht, M. Jurczak, L. Goux, and C. Detavernier, ACS Appl. Mater. Interfaces 5, 6984 (2013).
34.Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, Nat. Commun. 3, 732 (2012).
35.T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, and Y. Iwashita, Appl. Phys. Lett. 99, 223517 (2011).
36.M. Wang, H. Lv, Q. Liu, Y. Li, Z. Xu, S. Long, H. Xie, K. Zhang, X. Liu, H. Sun, X. Yang, and M. Liu, IEEE Electron Device. Lett. 33, 1556 (2012).
37.T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, K. Kobayashi, and T. Chikyow, J. Mater. Res. 27, 869 (2012).
38.U. Chand, K.C. Huang, C. Y. Huang, C.H. Ho, C.H. Lin, and T. Y. Tseng, J. Appl. Phys. 117, 184105 (2015).
39.S. Ban and O. Kim, Jpn. J. Appl. Phys. 53, 06JE15 (2014).
40.K.L. Lin, T. H. Hou, J. Shieh, J. H. Lin, C. T. Chou, and Y. J. Lee, J. Appl. Phys. 109, 084104 (2011).
41.X. Guo, C. Schindler, S. Menzel, and R. Waser, Appl. Phys. Lett. 91, 133513 (2007).
42.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2006).
43.S. Menzel, I. Valov, R. Waser, N. Adler, J. Hurk, and S. Tappertzhofen, IEEE 92 (2013).
44.M. O. Aboelfotoh, A. Cros, B. G. Svensson, and K. N. Tu, Phys. Rev. B 41, 9819 (1990).

Data & Media loading...


Article metrics loading...



One of the most effective methods integrating self-rectifying RRAM is alleviating sneak current in crossbar architecture. In this work, to investigate RRAMs with excellent properties of self-rectifying effect, simple Cu/HfO/-Si tri-layer devices are fabricated and investigated through characteristic measurement. The experimental results demonstrate that the device exhibits forming-free behavior and a remarkable rectifying effect in low resistance state (LRS) with rectification ratio of 104 at ±1 V, as well as considerable OFF/ON ratio (resistive switching window) of 104 at 1 V. The formation and annihilation of localized Cu conductive filament plays a key role in the resistive switching between low resistance state (LRS) and high resistance state (HRS). In addition, intrinsic rectifying effect in LRS attributes to the Schottky contact between Cu filament and -Si electrode. Furthermore, satisfactory switching uniformity of cycles and devices is observed. As indicated by the results, Cu/HfO/-Si devices have a high potential for high-density storage practical application due to its excellent properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd