Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. C. Sales, Int J Appl Ceram Tec 4(4), 291 (2007).
2.A. Shakouri, Annu Rev Mater Res 41, 399 (2011).
3.E. N. Hurwitz, M. Asghar, A. Melton, B. Kucukgok, L. Q. Su, M. Orocz, M. Jamil, N. Lu, and I. T. Ferguson, J Electron Mater 40(5), 513 (2011).
4.H. Wang, Z. M. Gibbs, Y. Takagiwa, and G. J. Snyder, Energ Environ Sci 7(2), 804 (2014).
5.K. Yang, S. Cahangirov, A. Cantarero, A. Rubio, and R. D’Agosta, Phys Rev B 89(12), (2014).
6.H. H. Xie, H. Wang, Y. Z. Pei, C. G. Fu, X. H. Liu, G. J. Snyder, X. B. Zhao, and T. J. Zhu, Adv Funct Mater 23(41), 5123 (2013).
7.T. M. Tritt, Annu Rev Mater Res 41, 433 (2011).
8.A. F. Ioffe, Sov Phys-Sol State 1(10), 1487 (1960).
9.A. Sztein, H. Ohta, J. Sonoda, A. Ramu, J. E. Bowers, S. P. DenBaars, and S. Nakamura, Appl Phys Express 2(11), (2009).
10.S. Yamaguchi, Y. Iwamura, and A. Yamamoto, Appl Phys Lett 82(13), 2065 (2003).
11.N. Lu and I. Ferguson, Semicond Sci Tech 28(7), (2013).
12.B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, Appl Phys Lett 92(4), (2008).
13.A. Sztein, H. Ohta, J. E. Bowers, S. P. DenBaars, and S. Nakamura, J Appl Phys 110(12), (2011).
14.A. Sztein, J. E. Bowers, S. P. DenBaars, and S. Nakamura, Appl Phys Lett 104(4), (2014).
15.W. L. Liu and A. A. Balandin, J Appl Phys 97(7), (2005).
16.A. Sztein, J. Haberstroh, J. E. Bowers, S. P. DenBaars, and S. Nakamura, J Appl Phys 113(18), (2013).
17.T. Tong, D. Fu, A. X. Levander, W. J. Schaff, B. N. Pantha, N. Lu, B. Liu, I. Ferguson, R. Zhang, J. Y. Lin, H. X. Jiang, J. Wu, and D. G. Cahill, Appl Phys Lett 102(12), (2013).
18.Y. Huang, A. Melton, B. Jampana, M. Jamil, J. H. Ryou, R. D. Dupuis, and I. T. Ferguson, J Photon Energy 2 (2012).
19.Y. Huang, A. Melton, B. Jampana, M. Jamil, J. H. Ryou, R. D. Dupuis, and I. T. Ferguson, J Appl Phys 110(6), (2011).
20.G. L. Eesley, B. M. Clemens, and C. A. Paddock, Appl Phys Lett 50(12), 717 (1987).
21.G. T. Hohensee, W. P. Hsieh, M. D. Losego, and D. G. Cahill, Rev Sci Instrum 83(11), (2012).
22.D. G. Cahill, Rev Sci Instrum 75(12), 5119 (2004).
23.R. B. Wilson, B. A. Apgar, W. P. Hsieh, L. W. Martin, and D. G. Cahill, Phys Rev B 91(11), (2015).
24.F. K. Yam and Z. Hassan, Superlattice Microst 43, 1 (2008).
25.M. E. Vickers, M. J. Kappers, T. M. Smeeton, E. J. Thrush, J. S. Barnard, and C. J. Humphreys, J Appl Phys 94(3), 1565 (2003).
26.H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Hopler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch, and H. J. Korner, Appl Phys Lett 71(11), 1504 (1997).
27.M. Schuster, P. O. Gervais, B. Jobst, W. Hosler, R. Averbeck, H. Riechert, A. Iberl, and R. Stommer, J Phys D Appl Phys 32(10A), A56 (1999).
28.Hua Tong, Jing Zhang, Guangyu Liu, Juan A. Herbsommer, G. S. Huang, and Nelson Tansu, Proc. of SPIE 7939 (2011).
29.M. A. Moram and M. E. Vickers, Rep Prog Phys 72(3), (2009).
30.R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl Phys Lett 70(9), 1089 (1997).
31.I. K. Park, M. K. Kwon, S. H. Baek, Y. W. Ok, T. Y. Seong, S. J. Park, Y. S. Kim, Y. T. Moon, and D. J. Kim, Appl Phys Lett 87(6), (2005).
32.C. A. Parker, J. C. Roberts, S. M. Bedair, M. J. Reed, S. X. Liu, N. A. El-Masry, and L. H. Robins, Appl Phys Lett 75(17), 2566 (1999).
33.D. I. Florescu, V. M. Asnin, F. H. Pollak, R. J. Molnar, and C. E. C. Wood, J Appl Phys 88(6), 3295 (2000).

Data & Media loading...


Article metrics loading...



The III-Nitrides are promising candidate for high efficiency thermoelectric (TE) materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown InGaN were investigated for x =  0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K−1 and 21.84 × 10−4 Wm−1K−1 were observed, respectively for InGaN at room temperature. The highest value of figure-of-merit (ZT) was calculated to be 0.072 for InGaN alloy at room temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd