Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942040
1.
1.A. O. Olofinjana and K. S. Tan, J. Mater. Pro. Tech. 191, 377 (2007).
http://dx.doi.org/10.1016/j.jmatprotec.2007.03.047
2.
2.C. R. Cao, D. W. Ding, D. Q. Zhao, E. Axinte, H. Y. Bai, and W. H. Wang, Mater. Des. 60, 576 (2014).
http://dx.doi.org/10.1016/j.matdes.2014.04.021
3.
3.A. A. Kündig, M. Ohnuma, D. H. Ping, T. Ohkubo, and K. Hono, Acta Mater. 52, 2441 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.01.036
4.
4.Z. P. Lu, J. Shen, D. W. Xing, J. F. Sun, and C. T. Liu, Appl. Phys. Lett. 89, 071910 (2006).
http://dx.doi.org/10.1063/1.2336597
5.
5.P. Y. Li, G. Wang, D. Ding, and J. Shen, J. Non-Cryst. Solids. 358, 3200 (2012).
http://dx.doi.org/10.1016/j.jnoncrysol.2012.08.005
6.
6.P. Y. Li, G. Wang, D. Ding, and J. Shen, Mater. Des. 53, 145 (2014).
http://dx.doi.org/10.1016/j.matdes.2013.06.060
7.
7.H. Tan, Y. Zhang, D. Ma, Y. P. Feng, and Y. Li, Acta Mater. 51, 4551 (2003).
http://dx.doi.org/10.1016/S1359-6454(03)00291-X
8.
8.P. Y. Li, F. Y. Meng, Y. S. Wang, M. M. Dong, J. T. Shi, and P. W. Song, J. Rare Earth. 33, 972 (2015).
http://dx.doi.org/10.1016/S1002-0721(14)60514-7
9.
9.W. H. Wang, J. Appl. Phys. 111, 123519 (2012).
http://dx.doi.org/10.1063/1.4730441
10.
10.A. Takeuchi and A. Inoue, Mater. Trans. 12, 2817 (2005).
http://dx.doi.org/10.2320/matertrans.46.2817
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942040
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942040
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942040
2016-02-10
2016-09-29

Abstract

The effect of the Cu and Ni content on the crystallization mechanism and the crystallization temperatures of La–Al–Cu(Ni) metallic glasses (MGs) was studied by differential scanning calorimetry(DSC). The experimental results have shown that the DSC curves obtained for the La–Al–Cu and La–Al–Ni MGs exhibit two and three crystallization temperatures, respectively. The crystallization temperatures of the La–Al–Cu and La–Al–Ni MGs result from the merging and splitting of thermal events related to the corresponding eutectic atomic pairs in the LaCu and LaAl MGs, and LaNi and LaAl MGs, respectively. In addition, Al- and Ni-containing clusters with weak or strong atomic interaction in the Al–Ni atomic pairs strongly affect the crystallization mechanism and thus the crystallization temperature of La–Al–Ni MGs. This study provides a novel understanding of the relation between the crystallization temperature and the underlying crystallization mechanisms in La–Al–Cu(Ni) MGs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942040.html;jsessionid=zCY12J0NDdCzO3yRFx3qxQhg.x-aip-live-06?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942040&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942040&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942040'
Right1,Right2,Right3,