Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942042
1.
1.C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 8983 (2012).
http://dx.doi.org/10.1021/jp212558p
2.
2.V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman, Science 340, 1226419 (2013).
http://dx.doi.org/10.1126/science.1226419
3.
3.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotech. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
4.
4.F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, Proc. Natl. Acad. Sci. 105, 14262 (2008).
http://dx.doi.org/10.1073/pnas.0807325105
5.
5.A. Crepaldi, L. Moreschini, G. Autes, C. Tournier-Colletta, S. Moser, N. Virk, H. Berger, Ph. Bugnon, Y. J. Chang, K. Kern, A. Bostwick, E. Rotenberg, O. V. Yazyev, and M. Grioni, Phys. Rev. Lett. 109, 096803 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.096803
6.
6.Mazhar N. Ali, Jun Xiong, Steven Flynn, Jing Tao, Quinn D. Gibson, Leslie M. Schoop, Tian Liang, Neel Haldolaarachchige, Max Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).
7.
7.H. Mutka, Phys. Rev. B 28, 2855 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.2855
8.
8.K. Terashima, T. Sato, H. Komatsu, T. Takahashi, N. Maeda, and K. Hayashi, Phys. Rev. B 68, 155108 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.155108
9.
9.L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf, Phys. Rev. Lett. 97, 067402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067402
10.
10.R. H. Friend, D. Jrome, D. M. Schleich, and P. Molini, Solid State Commun. 27, 169 (1978).
http://dx.doi.org/10.1016/0038-1098(78)90825-6
11.
11.A. F. Kusmartseva, B. Sipos, H. Berger, L. Forr, and E. Tutis, Phys. Rev. Lett. 103, 236401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.236401
12.
12.S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.064506
13.
13.K. Horigane, N. Takeshita, C.-H. Lee, H. Hiraka, and K. Yamada, J. Phys. Soc. Jpn. 78, 063705 (2009).
http://dx.doi.org/10.1143/JPSJ.78.063705
14.
14.E. Bellingeri, I. Pallecchi, R. Buzio, A. Gerbi, D. marre, M. R. Cimberle, M. Tropeano, M. Putti, A. Palenzona, and C. Ferdehini, Appl. Phys. Lett. 96, 102512 (2010).
http://dx.doi.org/10.1063/1.3358148
15.
15.W. D. Si, Z. W. Lin, Q. Jie, W. G. Yin, J. Zhou, G. D. Gu, P. D. Johnson, and Q. Li, Appl. Phys. Lett. 95, 052504 (2010).
http://dx.doi.org/10.1063/1.3195076
16.
16.Y. Han, W. Y. Li, L. X. Cao, X. Y. Wang, B. Xu, B. R. Zhao, Y. Q. Guo, and J. L. Yang, Phys. Rev. Lett. 104, 017003 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.017003
17.
17.W. K. Wang, J. Li, J. Y. Yang, C. C. Gu, X. L. Chen, Z. T. Zhang, X. B. Zhu, W. J. Lu, H. B. Wang, P. H. Wu, Z. R. Yang, M. L. Tian, Y. H. Zhang, and V. V. Moshchalkov, Appl. Phys. Lett. 105, 232602 (2014).
http://dx.doi.org/10.1063/1.4903922
18.
18.Z. T. Zhang, Z. R. Yang, W. J. Lu, X. L. Chen, L. Li, Y. P. Sun, C. Y. Xi, L. S. Ling, C. J. Zhang, L. Pi, M. L. Tian, and Y. H. Zhang, Phys. Rev. B 88, 214511 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.214511
19.
19.K. Horigane, H. Hiraka, and K. Ohoyama, J. Phys. Soc. Jpn. 78, 074718 (2009).
http://dx.doi.org/10.1143/JPSJ.78.074718
20.
20.S. Li, Clarina de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Y. L. Huang, F. C. Hsu, K. W. Yeh, M. K. Wu, and P. Dai, Phys. Rev. B 79, 054503 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.054503
21.
21.W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham, L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.247001
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942042
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942042
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942042
2016-02-10
2016-09-27

Abstract

We have recently reported that the superconducting transition temperature of FeTeSe flakes attached onto commercial Scotch tape can be enhanced by about 1-2 K due to a thermal-mismatch induced compressive strain. In this work, we further investigated the Scotch tape effect on structural variation of FeTeSe and FeTe flakes by X-ray diffraction measurements. We show that for FeTeSe, the lattice constant of taped flakes is elongated by about 0.5% at 15 K as compared with bulk crystal. Upon warming from 15 K, the lattice constant of the taped flakes first levels off then displays negative thermal expansion followed by monotonic increase at temperatures above 100 K. For antiferromagnetic FeTe, the structural transition around 70 K is remarkably broadened by about 2 K. The present results demonstrate that the Scotch tape is a simple and effective tool to probe structure sensitive physical properties of layered materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942042.html;jsessionid=cnEqNU3MOtTz3Ti3_qcQZC1L.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942042&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942042&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942042'
Right1,Right2,Right3,