Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.L. Josephson, BioMEMS and Biomedical Nanotechnology 227 (2006).
2.S. Morisada, N. Miyata, and K. Iwahori, J. Microbiol. Methods 51, 141 (2002);
2.R.E. Zigeuner, R. Riesenberg, H. Pohla, A. Hofstetter, and R. Oberneder R, J. Urol. 169, 701 (2003).
3.R. Hergt, S. Dutz, R. Muller, and M. Zeisberger, J. Phys. : Condens. Matter 18, S2919 (2006).
4.Taeho Kim and Taeghwan Hyeon, Nanotechnology 25(1), (2014).
5.R.W. Rand, H.D. Snow, D.G. Elliott, and M. Snyder, Appl. Biochem. Biotechnol. 6, 265 (1981);
5.S. Suzuki, K. Arai, T. Koike, and K. Oguchi, J. Japan. Soc. Cancer Therapy 25, 2649 (1990);
5.M. Mitsumori, Int. J. Hyperthermia 10, 785 (1994).
6. Wahajuddin and Sumit Arora, International Journal of Nanomedicine 7, 3445 (2012).
7.P. Moroz, S. K. Jones, and B. N. Gray, Int. J. Hyperthermia 18(4), 267 (2002).
8.D. Nagesha, H. Devalapally, S. Sridhar, and M. M. Amiji, Fundamental Biomedical Technologies 4, 381 (2008).
9.C. S. Lee, H. Lee, and R. M. Westervelt, Applied Physics Letters 79(20), 3308 (2001).
10.M. Drndic, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Westervelt, Appl. Phys. Lett. 72, 2906 (1998).
11.H. Lee, A.M. Purdon, V. Chu, and R.M. Westervelt, Nano Letters 5, 995 (2004);
11.H. Lee, A.M. Purdon, and R.M. Westervelt, IEEE Transactions on Magnetics 40, 2991 (2004);
11.H. Lee, A.M. Purdon, and R.M. Westervelt, Applied Physics Letters 85, 1063 (2004).
12.Frederick Gertz, Rustam Azimov, and Alexander Khitun, Applied Physics Letters 101(1), (2012).
13.J. E. Lovelock, Biochimica Et Biophysica Acta 10, 414 (1953).
14.A. Nacev, C. Beni, O. Bruno, and B. Shapiro, Journal of Magnetism and Magnetic Materials 323(6), 651 (2011).

Data & Media loading...


Article metrics loading...



We report a manipulation of biological cells (erythrocytes) by magnetite (FeO) nanoparticles in the presence of a magnetic field. The experiment was accomplished on the top of a micro-electromagnet consisting of two magnetic field generating contours. An electric current flowing through the contour(s) produces a non-uniform magnetic field, which is about 1.4 mT/μm in strength at 100 mA current in the vicinity of the current-carrying wire. In responses to the magnetic field,magnetic nanoparticles move towards the systems energy minima. In turn, magnetic nanoparticles drag biological cells in the same direction. We present experimental data showing cell manipulation through the control of electric current. This technique allows us to capture and move cells located in the vicinity (10-20 microns) of the current-carrying wires. One of the most interesting results shows a periodic motion of erythrocytes between the two conducting contours, whose frequency is controlled by an electric circuit. The obtained results demonstrate the feasibility of non-destructive cell manipulation by magnetic nanoparticles with micrometer-scale precision.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd