Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. Mogilevsky, L. Borland, M. Brickhouse, and A. W. Fountain III, Int. J. Spectroscopy 2012, 808079 (2012).
2.B. D. Piorek, S. J. Lee, J. G. Santiago, M. Moskovits, S. Banerjee, and C. D. Meinhart, Proceedings Nat. Acad. Sci. 104, 18898-18901 (2007).
3.D. G. Fouche and R. K. Chang, Appl. Phys. Letters 18, 579-580 (1971).
4.D. G. Fouche and R. K. Chang, Appl. Phys. Letters 20, 256-257 (1972).
5.R. I. Surkin and L. M. Sverdlov, Opt. Spectrosc. 48, 139-140 (1980).
6.M. A. Buldakov, I. I. Ippolitov, V. M. Klimkin, I. I. Matrosov, and V. M. Mitchenkov, Opt. Spectrosc. 66, 609-611 (1989).
7.J. M. Cherlow and S. P. S. Porto, Laser Spectroscopy of Atoms and Molecules (1976), pp. 253-282.
8.H. W. Schrotter and H. W. Klockner, in Raman Spectroscopy of Gases and Liquids, edited by A. Weber (Springer-Verlag, New York, 1979).
9.S. Montero, J. Chem. Phys. 79, 4091-410 (1983).
10.R. L. Aggarwal, S. Di Cecca, L. W. Farrar, and T. H. Jeys, J. Raman Spectroscopy 45, 677-679 (2014).
11.R. L. Aggarwal, S. Di Cecca, L. W. Farrar, A. Shabshelowitz, and T. H. Jeys, Aerosol Sci. Technol. 49, 753-756 (2015).
12.NIST Chemistry WebBook (
13.G. Hochenbleicher and H. W. Schrotter, Appl. Spectrosc. 25, 360-362 (1971).
14.R. Ananthakrishnan, Ind. Acad. Sci. 5A, 285300 (1937).
15.R. G. Dickinson and S. S. West, Phys. Rev. 35, 1126-1127 (1930).

Data & Media loading...


Article metrics loading...



Raman spectra of ammonia (NH), chlorine (Cl), hydrogen sulfide (HS), phosgene (COCl2), and sulfur dioxide (SO) toxic gases have been measured in the fingerprint region 400-1400 cm−1. A relatively compact (<2′x2′x2′), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm−1 in NH. Three Raman modes are observed in Cl at 554, 547, and 539 cm−1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm−1 in HS, COCl, and SO, respectively. Values of 3.68 ± 0.26x10−32 cm2/sr (3.68 ± 0.26x10−36 m2/sr), 1.37 ± 0.10x10−30 cm2/sr (1.37 ± 0.10x10−34 m2/sr), 3.25 ± 0.23x10−31 cm2/sr (3.25 ± 0.23x10−35 m2/sr), 1.63 ± 0.14x10−30 cm2/sr (1.63 ± 0.14x10−34 m2/sr), and 3.08 ± 0.22x10−30 cm2/sr (and 3.08 ± 0.22x10−34 m2/sr) were determined for the differential Raman cross section of the 967 cm−1 mode of NH, sum of the 554, 547, and 539 cm−1 modes of Cl, 870 cm−1 mode of HS, 570 cm−1 mode of COCl, and 1151 cm-1 mode of SO, respectively, using the differential Raman cross section of 3.56 ± 0.14x10−31 cm2/sr (3.56 ± 0.14x10−35 m2/sr) for the 1285 cm−1 mode of CO as the reference.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd