Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J.E. Brewer, G. Atwood, and R. Bez, “Phase change memories,” in Nonvolatile Memory Technologies with Emphasis on Flash, edited by J.E. Brewer and M. Gill (Wiley-Interscience, 2007), p. 707.
2.R.F. Freitas and W.W. Wilcke, IBM Journal of Research and Development. 52, 439447 (2008).
3.B.C. Lee, E. Ipek, O. Mutlu, and D. Burger, in ISCA ’09 Proceedings of the 36th annual international symposium on Computer architecture (2009), pp. 2-13.
4.Int’l Technology Roadmap for Semiconductors, (2009).
5.Phase Change Materials – Science and Application, edited by S. Raoux and M. Wuttig (Springer Verlag, 2009).
6.S. Raoux, W. Welnic, and D. Ielmini, Chem. Rev. 110, 240267 (2010).
7.Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell, “Redesigning Data Structures for Non-Volatile Byte-Addressable Memory,” in Proceedings of USENIX Conference on File and Storage Technologies, February 15-17, 2011, San Jose, CA USA.
8.Y.D. Choi, I.H. Song, M.-H. Park, H.J. Chung, S.H. Chang, B.K. Cho, J.Y. Kim, Y.H. Oh, D.M. Kwon, S.W. Jung, J.H. Shin, Y.H. Rho, C.S. Lee, M.G. Kang, J.Y. Lee, Y.J. Kwon, S.H. Kim, J.H. Kim, Y.J. Lee, Qi Wang, S.H. Cha, S.J. Ahn, Hideki Horii, J.W. Lee, K.S. Kim, H.S. Joo, KG. Lee, Y.T. Lee, J.H. Yoo, and G.T. Jeong, in Solid-State Circuits Conference Digest of Technical Papers, (ISSCC) IEEE International (2012), pp. 46-48.
9.Q. He, Z. Li, J. H. Peng, Y. F. Deng, B. J. Zeng, W. Zhou, and X. S. Miao, Appl. Phys. Lett. 104, 223502 (2014).
10.R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, Nano Lett. 10, 414419 (2010).
11.S. W. Nam, H. S. Chung, Y. C. Lo, L. Qi, J. Li, Y. Lu, A. T. C. Johnson, Y. W. Jung, P. Nukala, and R. Agarwal, Science 336, 1561 (2012).
12.F. Xiong, M.-H. Bae, Y. Dai, A. D. Liao, A. Behnam, E. A. Carrion, S. Hong, D. Ielmini, and E. Pop, Nano Lett. 13, 464 (2013).
13.A.L. Lacaita and A. Redaelli, Microelectronic Engineering 109, 351356 (2013).
14.H.J. Kim, S. Seshadri, C.L. Dickey, and L. Chiu, ACM SIGOPS Operating Systems Review 48, 82-89 (2014).
15.H.J. Kim, S. Seshadri, C.L. Dickey, and L. Chiu, in Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST ’14) (Santa Clara, CA USA, 2014), pp. 1720.
16.I.S. Kim, S.L. Cho, D.H. Im, E.H. Cho, D.H. Kim, G.H. Oh, D.H. Ahn, S.O. Park, S.W. Nam, J.T. Moon, and C.H. Chung, in Digest of Technical Papers, IEEE Symposium on VLSI Technology, 203-204 (2010).
17.M.J. Kang, T.J. Park, Y.W. Kwon, D.H. Ahn, Y.S. Kang, H. Jeong, S.J. Ahn, Y.J. Song, sb.c. Kim, S.W. Nam, H.K. Kang, G.T. Jeongh, and C.H. Chung, in IEEE International Electron Device Meeting (IEDM), Digest of Technical Papers (2011), p. 39.
18.F. Xiong, M.-H. Bae, Y. Dai, A. D. Liao, A. Behnam, E. A. Carrion, S. Hong, D. Ielmini, and E. Pop, Nano Lett. 13, 464-469 (2013).
19.J. Liang, R.G.D. Jeyasingh, H.-Y. Chen, and H.-S. Philip, IEEE Trans. Electron Devices 59, 1155-1163 (2012).
20.C.-F. Chen, A. Schrott, M.H. Lee, S. Raoux, Y.H. Shih, M. Breitwisch, F.H. Baumann, E.K. Lai, T.M. Shaw, P. Flaitz, R. Cheek, E.A. Joseph, S.-H. Chen, B. Rajendran, H.L. Lung, and C. Lam, in Proc. IEEE Int. Memory Workshop (2009), DOI: 10.1109/IMW.2009.5090589.
21.B. Gleixner, F. Pellizzer, and R. Bez, in Non-Volatile Memory Technology Symposium (NVMTS), 2009 10th Annual, pp. 711.
22.A. Padilla, G.W. Burr, K. Virwani, A. Debunne, C.T. Rettner, T. Topuria, P.M. Rice, B. Jackson, D. Dupouy, A.J. Kellock, R.M. Shelby, K. Gopalakrishnan, R.S. Shenoy, and B.N. Kurdi, in Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 29.4.1-29.4.4.
23.A.L. Lacaita and A. Redaelli, Microelectronic Engineering 109, 351356 (2013).
24.K. Do, D. Lee, D.-H. Ko, H. Sohn, and M.-H. Cho, Electrochem. Solid-State Lett. 13, H284-H286 (2010).
25.T.-Y. Yang, J.-Y. Cho, Y.-J. Park, and Y.-C. Joo, Acta Materialia 60, 20212030 (2012).
26.Y.-C. Joo, T.-Y. Yang, J.-Y. Cho, and Y.-J. Park, J. Korean Ceram. Soc. 49, 43-47 (2012).
27.J. R. Lloyd and S. Nakahara, Thin Solid Films 93, 281-286 (1982).
28.S. Nakahara, Thin Solid Films 64, 149-161 (1979).
29.F. Ying, R.W. Smith, and D. J. Srolovitz, Appl. Phys. Lett. 69, 3007 (1996).
30.S. Privitera, E. Rimini, and R. Zonca, Appl. Phys. Lett. 85, 3044 (2004).
31.K. Kim, J.-C. Park, J.-G. Chung, S.A. Song, M.-C. Jung, Y.M. Lee, H.-J. Shin, B. Kuh, Y. Ha, and J.-S. Noh, Appl. Phys. Lett. 89, 243520 (2006).
32.K.B. Borisenko, Y. Chen, D.J.H. Cockayne, S.A. Song, and H.S. Jeong, Acta Materialia 59, 43354342 (2011).
33.X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, and S. Feng, Appl. Phys. Lett. 101, 142104 (2012).
34.K. Wang, C. Steimer, D. Wamwangi, S. Ziegler, and M. Wuttig, Appl . Phys. A 80, 1611-1616 (2005).
35.K. Wang, C. Steimer, D. Wamwangi, S. Ziegler, M. Wuttig, J. Tomforde, and W. Bensch, Microsyst. Technol. 13, 203-206 (2007).
36.J. Zhou, Z. Sun, L. Xu, and R. Ahuja, Solid State Commun. 148, 113-116 (2008).
37.H.J. Shin, Y.-S. Kang, A. Benayad, K.-H. Kim, Y.M. Lee, M.-C. Jung, T.-Y. Lee, D.-S. Suh, K.H.P. Kim, C. Kim, and Y. Khang, Appl. Phys. Lett. 93, 021905 (2008).
38.W.D. Song, L.P. Shi, X.S. Miao, and T.C. Chong, Appl. Phys. Lett. 90, 091904 (2007).
39.T.-J. Park, S.-Y. Choi, and M.-J. Kang, Thin Solid Films 515, 5049-5053 (2007).
40.K.-J. Choi, S.-M. Yoon, N.-Y. Lee, S.-Y. Lee, Y.-S. Park, B.-G. Yu, and S.-O. Ryu, Thin Solid Films 516, 8810-8812 (2008).
41.S.-W. Kim, W.-S. Lim, T.-W. Kim, and H.-Y. Lee, Jpn. J. Appl. Phys. 47, 5337-5341 (2008).
42.O. Amir and R. Kalish, J. Appl. Phys. 70, 4958 (1991).
43.M. Kokkoris, P. Misaelides, S. Kossionides, Ch. Zarkadas, A. Lagoyannis, R. Vlastou, C. T. Papadopoulos, and A. Kontos, Nucl. Instrum. Methods Phys. Res., Sect. B 249(77), S117-S128 (2006).
44.D. Mergel, D. Duschendorf, S. Eggert, R. Grammes, and B. Samset, Thin Solid Films 371, 218-224 (2000).
45.Y. Liu and P. H. Daum, J. Aerosol Sci. 39, 974-986 (2008).
46.CRC handbook of chemistry and physics, edited by William M. Haynes (CRC press, 2013).
47.Kenneth B. K. Teo, David B. Hash, Rodrigo G. Lacerda, N. L. Rupesinghe, M. S. Bell, S. H. Dalal, D. Bose, T. R. Govindan, B. A. Cruden, M. Chhowalla, G.A. J. Amaratunga, M. Meyyappan, and W. I. Milne, Nano Lett. 4, 921-926 (2004).
48.M. Boniardi, A. Redaelli, I. Tortorelli, F. Pellizzer, and A. Pirovano, Electron Device Lett., IEEE 33(4), 594-596 (2012).

Data & Media loading...


Article metrics loading...



The lower cyclic endurance of Phase Change Memory (PCM) devices limits the spread of its applications for reliable memory. The findings reported here show that micro-voids and excess vacancies that are produced during the deposition process and the subsequent growth in sputtered carbon-doped GeSbTe films is one of the major causes of device failure in PCM with cycling. We found that the size of voids in C(GeSbTe) films increased with increasing annealing temperature and the activation energy for the growth rate of voids was determined to be 2.22 eV. The film density, which is closely related to voids, varies with the deposition temperature and sputtering power used. The lower heat of vaporization of elemental Sb and Te compared to that for elemental Ge and C is a major cause of the low density of the film. It was possible to suppress void formation to a considerable extent by optimizing the deposition conditions, which leads to a dramatic enhancement in cyclic endurance by 2 orders of magnitude in PCM devices prepared at 300oC-300W compared to one prepared at 240oC-500W without change of compositions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd