Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc., Chem. Commun 7, 801 (1994).
2.J. H. Fendler and F. C. Meldrum, Adv. Mater. 7, 607 (1995).
3.S. Iijima, Nature 354, 56 (1991).
4.P. Yang, R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010).
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
6.B. Radisavljevic, A. Radenovic, J. Brivio1, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
7.D. Teweldebrhan, V. Goyal, and A. A. Balandin, Nano Lett. 10, 1209 (2010).
8.D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu, and Y. Cui, Nano Lett. 10, 2245 (2010).
9.Ph. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).
10.M. Maillard, S. Giorgio, and M. –P. Pileni, J. Phys. Chem. B 107, 2466 (2003).
11.A. P. Alivisatos, Science 271, 933 (1996).
12.X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59 (2000).
13.J. I. Hong, J. Choi, S. S. Jang, J. Gu, Y. Chang, G. Wortman, R. L. Snyder, and Z. L. Wang, Nano Lett. 12, 576 (2012).
14.A. Salant, M. Shalom, Z. Tachan, S. Buhbut, A. Zaban, and U. Banin, Nano Lett. 12, 2095 (2012).
15.H. Li, X. Qi, J. Wu, Z. Zeng, J. Wei, and H. Zhang, ACS Nano. 7, 2842 (2013).
16.S. –W. Min, H. S. Lee, H. J. Choi, M. K. Park, T. Nam, H. Kim, S. Ryu, and S. Im, Nanoscale 5, 548 (2013).
17.P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, Nano Lett. 13, 1649 (2013).
18.D. Kim and J. Moon, Electrochem. Solid-State Lett. 8, J30 (2005).
19.S. Jeong, K. Woo, D. Kim, S. Lim, J. Kim, H. Shin, Y. Xia, and J. Moon, Adv. Funct. Mater. 18, 679 (2008).
20.J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink, and U. S. Schuber, J. Mater. Chem. 20, 8446 (2010).
21.Y. Liang, W. Wang, B. Zeng, G. Zhang, J. Huang, J. Li, T. Li, T. Song, and X. Zhang, J. Alloys. Comp. 509, 5147 (2011).
22.Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, and Y. Zhong, Mater. Lett. 62, 4273 (2008).
23.H. He, D. Huang, X. Zhang, and G. Li, Solid State Commun. 152, 810 (2012).
24.G. Zhang, W. Wang, X. Lu, and X. Li, Cryst. Growth & Des. 9, 145 (2009).
25.Y. Xu, Z. Ren, G. Cao, W. Ren, K. Deng, and Y. Zhong, Mater. Lett. 62, 4525 (2008).
26.Y. Zhang, L. P. Hu, T. J. Zhu, J. Xie, and X. B. Zhao, Cryst. Growth & Des. 13, 645 (2013).
27.W. H. Qi and M. P. Wang, Mater. Chem. Phys. 88, 280 (2004).

Data & Media loading...


Article metrics loading...



Free-standing thin nanoplates of BiTe and BiSe were synthesized by solvothermal method. It was demonstrated that the thickness of the nanoplates can be controlled by introducing a controlled amount of polyvinylpyrrolidone (PVP) in the synthesis reaction. PVP bonds to the polar basal planes of hexagonal crystal structure of BiTe and BiSe, and they suppress the growth (speed) of the hexagonal crystals in the c-axis direction. Highly anisotropic growth yielded the formation of 2-dimensional nanostructures of nanoplates. The plates were examined directly with transmission electron microscopy(TEM) with heating. These crystalline nanoplates with extremely high width to thickness ratios were found to exhibit much lower thermal stability compared to the bulk counterpart or the conventional nanoparticles as represented by the reduced melting temperature. The melting temperature of a nanoplate decreased by more than 100°C compared to the melting temperature of the bulk material. While it is widely known that the meting temperature decreases for nanoparticles with reduced sizees in all three spatial dimensions, we demonstrate that the reduction in one dimension, i.e. thickness of the platelets in the present study, is effective enough to induce much greater decrease of the melting point than the decrease as observed for the case of nanoparticles.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd