Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942205
1.
1.M.J. Saxton, “Wanted: A positive control for anomalous subdiffusion,” Biophys. J. 103, 24112422 (2012).
http://dx.doi.org/10.1016/j.bpj.2012.10.038
2.
2.R. Metzler, J-H. Jeon, A.G. Chertsvy, and E. Barkai, “Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking,” Phys. Chem. Chem. Phys. 16, 24128-24164 (2014).
http://dx.doi.org/10.1039/C4CP03465A
3.
3.R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Phys. Rep. 339, 1-77 (2000).
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
4.
4.Y. Meroz and I.M. A Sokolov, “toolbox for determining subdiffusive mechanisms,” Phys. Rep. 573, 1-29 (2015).
http://dx.doi.org/10.1016/j.physrep.2015.01.002
5.
5.F. Höfling and T. Franosch, “Anomalous transport in the crowded world of biological cells,” Rev. Prog. Phys. 76, 046602 (2013).
http://dx.doi.org/10.1088/0034-4885/76/4/046602
6.
6.A. Sadana and N. Sadana, in Handbook of biosensor kinetics [15-16] (Elsevier, Amsterdam, 2011), Chap. 2.
7.
7.M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous Subdiffusion Is a Measure for Cytoplasmic Crowding in Living Cells,” Biophys. J. 87, 3518-3524 (2004).
http://dx.doi.org/10.1529/biophysj.104.044263
8.
8.A.V. Vorst, A Rosen, and Y. Kotsuka, RF/Microwave Interaction with Biological Tissues (John Wiley and Sons, Inc., New Jersey, 2006).
9.
9.E.C. Jordan and K.G. Balmain, Electromagnetic Waves and Radiating Systems (Prentice-Hall, New Jersey, 1968).
10.
10.J. Bisquert and A. Compte, “Theory of the electrochemical impedance of anomalous diffusion,” J. Electroanal. Chem. 499, 112-120 (2001).
http://dx.doi.org/10.1016/S0022-0728(00)00497-6
11.
11.R. Kant, R. Kumar, and V.K. Yadav, “Theory of anomalous diffusion impedance of realistic fractal electrode,” J. Phys. Chem. Lett. 112, 4019-4023 (2008).
http://dx.doi.org/10.1021/jp712066k
12.
12.P.A. Santoro, J.L. de Paula, E.K. Lenzi, and L.R. Evangelista, “Anomalous diffusion governed by fractional diffusion equation and the electrical response of an electrolytic cell,” J. Chem. Phys. 135, 114704 (2011).
http://dx.doi.org/10.1063/1.3637944
13.
13.L.R. Evangelista, E.K. Lenzi, G. Barbero, and J.R. Macdonald, “Anomalous diffusion and memory effects on the impedance spectroscopy for finite-length situations,” J. Phys.: Condens. Matter 23, 485005 (2011).
http://dx.doi.org/10.1088/0953-8984/23/48/485005
14.
14.J.M. Haugh, “Analysis of reaction-diffusion systems with anomalous subdiffusion,” Biophys. J. 97, 435-442 (2009).
http://dx.doi.org/10.1016/j.bpj.2009.05.014
15.
15.S. Ramanathan, “Negative resistances and inductances in equivalent circuits for adsorption-reaction kinetics,” ECS Trans. 33, 21-35 (2011).
16.
16.M.Z. Bazant, B.D. Storey, and A.A. Kornyshev, “Double layer in ionic liquids: overscreening versus crowding,” Phys. Rev. Lett. 106, 046102 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.046102
17.
17.J-H. Jeon, A.V. Chechkin, and R. Metzler, “Scaled Brownian motion: a paradoxical process with a time dependent diffusivity for the description of anomalous diffusion,” Phys. Chem. Chem. Phys. 16, 15811-15817 (2014).
http://dx.doi.org/10.1039/C4CP02019G
18.
18.A. Fulinski, “Anomalous diffusion and weak nonergodicity,” Phys. Rev. E 83, 061140 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.061140
19.
19.S.H. Glarum and J.H. Marshall, “The a-c response of iridium oxide films,” J. Electrochem. Soc.: Electrochem. Sci. Technology 127, 1467-1474 (1980).
http://dx.doi.org/10.1149/1.2129932
20.
20.B.D. Cahan, M.L. Daroux, and E.B. Yeager, “Effect of Physical and Geometric Factors on the Impedance of Electrochemical Power Sources,” J. Electrochem. Soc. 136, 1585-1590 (1989).
http://dx.doi.org/10.1149/1.2096973
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942205
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942205
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942205
2016-02-12
2016-09-25

Abstract

Anomalous subdiffusion governs the processes which are not energetically driven, on a molecular scale. This paper proposes a model to predict the response of electrochemical impedance due to such diffusion process. Previous works considered the use of fractional calculus to predict the impedance behaviour in response to the anomalous diffusion. Here, we have developed an expression which predicts the skin-effect, marked by an increase in the impedance with increasing frequency, in this regime. Negative inductances have also been predicted as a consequence of the inertial response of adsorbed species upon application of frequency-mediated perturbations. It might help the researchers in the fields of impedimetric sensors to choose the working frequency and those working in the field of batteries to choose the parameters, likewise. This work would shed some light into the molecular mechanisms governing the impedance when exposed to frequency-based perturbations like electromagnetic waves (microwaves to ionizing radiations) and in charge storage devices like batteries etc.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942205.html;jsessionid=irMnA_HL_JXTEroSbi7Ehb9H.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942205&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942205&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942205'
Right1,Right2,Right3,