Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Y. Tseng and S. M. Sze, Am. Scientific Pub., CA. USA, ,Vol. 1, p.1 (2012).
2.H.-S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, Proc. IEEE 100(6), 19511970 (2012).
3.U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, Trans on Elec. Dev. 56(5), 10401047 (2009).
4.X. Wu, K. Li, N. Raghavan, M. Bosman, Q.-X. Wang, D. Cha, X.-X. Zhang, and K.-L. Pey, Appl. Phy. Lett. 99, 093502 (2011).
5.J. Sun, X. Wu, Q. Liu, and M. Liu, in 20th IEEE International Symposium (IPFA), pp. 560562 (July 2013), DOI: 10.1109/IPFA.2013.6599223.
6.F. Pan, S. Yin, and V. Subramanian, Electron. Dev. Lett. 32(7), (July2011).
7.S. Qin, Z. Liu, G. Zhang, J. Zhang, Y. Sun, H. Wu, H. Qian, and Z. Yu, Phys. Chem. Chem Phys. 17(14), (2015).
8.D. Berco and T. Y. Tseng, Journal of Computational Electronics (August 2015), DOI: 10.1007/s10825-015-0736-7.
9.D. Berco and T. Y. Tseng, Journal of Computational Electronics (August 2015), DOI: 10.1007/s10825-015-0744-7.
10.W. M. Haynes, CRC Handbook of Chemistry and Physics, 91st ed. (CRC press, Boca Raton, FL, 2010), pp. 5-165-17.
11.J. Guy, G. Molas, P. Blaise, C. Carabasse, M. Bernard, A. Roule, G. Le Carval, V. Sousa, H. Grampeix, V. Delaye, A. Toffoli, J. Cluzel, P. Brianceau, O. Pollet, V. Balan, S. Barraud, O. Cueto, G. Ghibaudo, F. Clermidy, B. De Salvo, and L. Perniola, in IEDM (2014), pp.
12.G. Molas, E. Vianello, F. Dahmani, M. Barci, P. Blaise, J. Guy, A. Toffoli, M. Bernard, A. Roule, F. Pierre1, C. Licitra, B. De Salvo, and L. Perniola, in IEDM (2014), pp.
13.T. L. Tsai, H. Y. Chang, F. S. Jiang, and T. Y. Tseng, Electron Dev. Lett. 36(11), 11461148 (2015).
14.X. L. Shao, J. S. Zhao, K. L. Zhang, R. Chen, K. Sun, C. J. Chen, K. Liu, L. W. Zhou, J. Y. Wang, C. M. Ma, K. J. Yoon, and C. S. Hwang, ACS Appl. Mater. Interfaces 5(21), 1126511270 (2013).
15.U. Celano, L. Goux, A. Belmonte, G. Giammaria, K. Opsomer, C. Detavernier, O. Richard, H. Bender, F. Irrera, M. Jurczak1, and W. Vandervorst, in IEDM 2014 (2014), pp.
16.M. Barci, J. Guy, G. Molas, E. Vianello, A. Toffoli, J. Cluzel, A. Roule, M. Bernard, C. Sabbione, L. Perniola, and B. De Salvo, in IEEE International Reliability Physics Symposium (2014), pp. 5E.3.15E.3.4 DOI:10.1109/IRPS.2014.6860677.
17.K.-L. Lin, T.-H. Hou, J. Shieh, J.-H. Lin, C.-T. Chou, and Y.-J. Lee, Jour. Appl. Phy. 109, 084104 (2011).
18.X. Xu, H. Lv, H. Liu, T. Gong, G. Wang, M. Zhang, Y. Li, Q. Liu, S. Long, and M. Liu, IEEE Elect. Dev. Lett. 36(2), (FEBRUARY2015).

Data & Media loading...


Article metrics loading...



This study investigates the underlying mechanisms of multiple conductive filaments (CF) creation in metal-ion based conductive bridge RRAM (CBRAM) by using the Metropolis Monte Carlo algorithm and suggests a possible explanation for this phenomenon. The simulation method is demonstrated over a Cu/HfO structure, starting from a random initial distribution of oxygen vacancies (OV) defects in the resistive switching layer, to a formed CF and ending in a ruptured state. the results indicate that “Hot Spots” (HS), where agglomeration of OV trap like states for electron hopping based conduction induce local heating, create favorable energy conditions to attract diffused metal species originating from the top electrode. While HS may be created and annihilated by random OV generation and recombination processes, the precipitated metal forms a stem out of which a CF could evolve. The CF stem’s final growth stage is mainly driven by drift and diffusion. This process may lead to the formation of one or more CFs as a function of the forming bias voltage. This bias dependence is demonstrated over a large range, where the creation of a single, double and multiple CFs are shown. In addition, the reset process of the multi CF device is presented, and the experimentally observed, step like, gradual CBRAM reset is verified. The simulated results are in good agreement with experimental data and promote the idea that OV defect engineering may be used to improve CBRAM performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd