Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942427
1.
1.R. Aitken, V. Chandra, J. Myers, B. Sandhu, L. Shifren, and G. Yeric, in Tech. Dig. Symp. (VLSI Technology, 2014), pp. 25.
2.
2.H. Fuketa, T. Yasufuku, S. Iida, M. Takamiya, M. Nomura, H. Shinohara, and T. Sakurai, Tech. Dig. Int. Electron Devices Meeting (2007) pp. 559562.
3.
3.K. Boucart and A. M. Ionescu, IEEE Trans. Electron Device 54(7), 17251733 (2007).
http://dx.doi.org/10.1109/TED.2007.899389
4.
4.K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, Dig. Int. Electron Devices Meeting (2002) pp. 289292.
5.
5.S. Salahuddin and S. Datta, Tech. Dig. Int. Electron Devices Meeting (2008) pp. 693696.
6.
6.S. Salahuddin and S. Datta, Nano Lett. 8(2), 405410.
http://dx.doi.org/10.1021/nl071804g
7.
7.V. V. Zhirnov and R. K. Calvin, Nature Nanotechnol. 3, 7778 (2008).
http://dx.doi.org/10.1038/nnano.2008.18
8.
8.A. I. Khan, C. W. Yeung, C. Hu, S. Salahudin, S. Salahuddin, and S. Datta, Tech. Dig. Int. Electron Devices Meeting (2011) pp. 255258.
9.
9.A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh, and S. Salahuddin, Appl. Phys. Lett. 99, 113501 (2011).
http://dx.doi.org/10.1063/1.3634072
10.
10.A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, 14, 182- 186 (2015).
11.
11.G. Salvatore, D. Bouvent, and A. M. Ionescu, Tech. Dig. Int. Electron Devices Meeting (2008) pp. 167170.
12.
12.M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, Appl. Phys. Lett. 102, 242905 (2013).
http://dx.doi.org/10.1063/1.4811483
13.
13.M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, K. D. Kim, and C. S. Hwang, Appl. Phys. Lett. 105, 072902 (2014).
http://dx.doi.org/10.1063/1.4893376
14.
14.S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, Adv. Funct. Mater. 22, 24122417 (2012).
http://dx.doi.org/10.1002/adfm.201103119
15.
15.J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, Nano Lett. 12, 43184323 (2012).
http://dx.doi.org/10.1021/nl302049k
16.
16.T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).
http://dx.doi.org/10.1063/1.3634052
17.
17.T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, Tech. Dig. Int. Electron Devices Meeting (2011) pp. 547550.
18.
18.T. Shimizu, T. Yokouchi, T. Shiraishi, T. Oikawa, P. S. Sankara Rama Krishnan, and H. Funakubo, Jpn. J. Appl. Phys. 53, 09PA04 (2014).
http://dx.doi.org/10.7567/JJAP.53.09PA04
19.
19.J. Müller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsh, K. Gebauer, U. Schröder, and T. Mikolajick, in Tech. Dig. Symp. (VLSI Technology, 2012), pp. 2526.
20.
20.L. D. Landau and I. M. Khalatnikov, Dok. Akad. Nauk, SSSR 46, 469472 (1954).
21.
21.K. Natori, J. Appl. Phys. 76(8), 48794890 (1994).
http://dx.doi.org/10.1063/1.357263
22.
22.J. Li, B. Nagaraj, H. Liang, W. Cao, C. H. Lee, and R. Ramesh, Appl. Phys. Lett. 84(7), 11741176 (2004).
http://dx.doi.org/10.1063/1.1644917
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942427
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942427
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942427
2016-02-16
2016-09-29

Abstract

Internet-of-Things (IoT) technologies require a new energy-efficient transistor which operates at ultralow voltage and ultralow power for sensor node devices employing energy-harvesting techniques as power supply. In this paper, a practical device design guideline for low voltage operation of steep-slope negative-capacitance field-effect-transistors (NCFETs) operating at sub-0.2V supply voltage is investigated regarding operation speed, material requirement and energy efficiency in the case of ferroelectric HfO gate insulator, which is the material fully compatible to Complementary Metal-Oxide-Semiconductor(CMOS) process technologies. A physics-based numerical simulator was built to design NCFETs with the use of experimental HfOmaterial parameters by modeling the ferroelectric gate insulator and FET channel simultaneously. The simulator revealed that NCFETs with ferroelectric HfO gate insulator enable hysteresis-free operation by setting appropriate operation point with a few nm thick gate insulator. It also revealed that, if the finite response time of spontaneous polarization of the ferroelectric gate insulator is 10-100psec, 1-10MHz operation speed can be achieved with negligible hysteresis. Finally, by optimizing material parameters and tuning negative capacitance, 2.5 times higher energy efficiency can be achieved by NCFET than by conventional MOSFETs. Thus, NCFET is expected to be a new CMOS technology platform for ultralow power IoT.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942427.html;jsessionid=9W3xzGBDUBUXBmJfuXEArk9z.x-aip-live-06?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942427&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942427&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942427'
Right1,Right2,Right3,