Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942428
1.
1.H.B. Braun, “Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons,” Advances in Physics 61, 1 (2012).
http://dx.doi.org/10.1080/00018732.2012.663070
2.
2.M.P. Sharrock, “Time dependence of switching fields in magnetic recording media,” J. Appl. Phys. 76, 6413 (1994).
http://dx.doi.org/10.1063/1.358282
3.
3.D. Goll, S. Macke, and H.N. Bertram, “Thermal reversal of exchange spring composite media in magnetic fields,” Appl. Phys. Lett. 90, 172506 (2007).
http://dx.doi.org/10.1063/1.2731519
4.
4.D. Suess, S. Eder, J. Lee, R. Dittrich, J. Fidler, J. W. Harrell, T. Schrefl, G. Hrkac, M. Schabes, N. Supper, and A. Berger, “Reliability of Sharrocks Equation for Exchange Spring Bilayers,” Phys. Rev. B 75, 174430 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174430
5.
5.D. Suess, L. Breth, J. Lee, M. Fuger, C. Vogler, F. Bruckner, B. Bergmair, T. Huber, J. Fidler, and T. Schrefl, “Calculation of Coercivity of Magnetic Nanostructures at Finite Temperatures,” Phys. Rev. B 84, 224421 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.224421
6.
6.K. Maaz, A. Mumtaz, S.K. Hasanain, and M.F. Bertino, “Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles,” J. Magn. Magn. Mater. 332, 2199 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.02.010
7.
7.C. de Julián Fernández, “Influence of the temperature dependence of anisotropy on the magnetic behavior of nanoparticles,” Phys. Rev. B 72, 054438 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054438
8.
8.P.M. Paulus, F. Luis, M. Kröll, G. Schmid, and L.J. de Jongh, “Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires,” J. Magn. Magn. Mater. 224, 180 (2001).
http://dx.doi.org/10.1016/S0304-8853(00)00711-3
9.
9.D.J. Sellmyer, M. Zheng, and R. Skomski, “Magnetism of Fe, Co and Ni nanowires in self-assembled arrays,” J. Phys.: Condens. Matter 13, R433 (2001).
http://dx.doi.org/10.1088/0953-8984/13/25/201
10.
10.J.J.M. Ruigrok, R. Coehoorn, S.R. Cumpson, and H.W. Kesteren, “Disk recording beyond 100 Gb/in.2: Hybrid recording?,” J. Appl. Phys. 87, 5398 (2000).
http://dx.doi.org/10.1063/1.373356
11.
11.Jianhua Xue and R. H. Victora, “Micromagnetic predictions for thermally assisted reversal over long time scales,” Appl. Phys.Lett. 77, 3432 (2000).
http://dx.doi.org/10.1063/1.1331094
12.
12.O. Chubykalo-Fesenko and R.W. Chantrell, “Modeling of Long-Time Thermal Magnetization Decay in Interacting Granular Magnetic Materials,” IEEE Trans. Magn. 41, 3103 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854888
13.
13.O.A. Chubykalo, B. Lengsfield, B. Jones, J. Kaufman, J.M. Gonzalez, R.W. Chantrell, and R. Smirnov-Rueda, “Micromagnetic modelling of thermal decay in interacting systems,” J. Magn. Magn. Mater. 221, 132 (2000).
http://dx.doi.org/10.1016/S0304-8853(00)00436-4
14.
14.W.F. Brown, “Thermal fluctuations of fine ferromagnetic particles,” IEEE Transactions on Magnetics 15, 1196 (1979).
http://dx.doi.org/10.1109/TMAG.1979.1060329
15.
15.W.T. Coffey, D.A. Garanin, and D.J. McCarthy, “Crossover formulas in the Kramers theory of thermally activated escape rates - Application to spin systems,” Advances in Chemical Physics 117, 483 (2001).
16.
16.R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, “A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems,” J. Magn. Magn. Mater. 250, L12 (2002).
http://dx.doi.org/10.1016/S0304-8853(02)00388-8
17.
17.R. Dittrich, T. Schrefl, H. Forster, D. Suess, W. Scholz, and J. Fidler, “Energy Barriers in Magnetic Random Access Memory Elements,” IEEE Trans. on Magn. 39, 2839 (2003).
http://dx.doi.org/10.1109/TMAG.2003.816239
18.
18.A. Thiaville, J.M. García, R. Dittrich, J. Miltat, and T. Schrefl, “Micromagnetic study of Bloch-point-mediated vortex core reversal,” Phys. Rev. B 67, 094410 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.094410
19.
19.W. E, W. Ren, and E. Vanden-Eijnden, “Energy landscape and thermally activated switching of submicron-sized ferromagnetic elements,” J. Appl. Phys. 93, 2275 (2003).
http://dx.doi.org/10.1063/1.1536737
20.
20.R. Dittrich, T. Schrefl, A. Thiaville, J. Miltat, V. Tsiantos, and J. Fidler, “Comparison of Langevin dynamics and direct energy barrier computation,” J. Magn. Magn. Mater. 272-276, 747 (2004).
http://dx.doi.org/10.1016/j.jmmm.2003.11.274
21.
21.R. Dittrich, T. Schrefl, M. Kirschner, D. Suess, G. Hrkac, F. Dorfbauer, O. Ertl, and J. Fidler, “Thermally Induced Vortex Nucleation in Permalloy Elements,” IEEE Trans. on Magn. 41, 3592 (2005).
http://dx.doi.org/10.1109/TMAG.2005.854736
22.
22.D. Suess, “Multilayer exchange spring media for magnetic recording,” Appl. Phys. Lett. 89, 113105 (2006).
http://dx.doi.org/10.1063/1.2347894
23.
23.D.V. Berkov, “Magnetization Dynamics Including Thermal Fluctuations: Basic Phenomenology, Fast Remagnetization Processes and Transitions Over High-energy Barriers,” in Handbook of Magnetism and Advanced Magnetic Materials, edited byH. Kronmüller and S. Parkin., Vol. 2: Micromagnetism (JohnWiley & Sons, Ltd, Chichester, UK, 2007), p. 795.
24.
24.P. Krone, D. Makarov, M. Albrecht, T. Schrefl, and D. Suess, “Magnetization reversal processes of single nanomagnets and their energy barrier,” J. Magn. Magn. Mater. 322, 3771 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.07.041
25.
25.P.B. Visscher and R. Zhu, “Low-dimensionality energy landscapes: Magnetic switching mechanisms and rates,” Physica B: Condensed Matter 407, 1340 (2012).
http://dx.doi.org/10.1016/j.physb.2011.07.053
26.
26.G. Fiedler, J. Fidler, J. Lee, T. Schrefl, R.L. Stamps, H.B. Braun, and D. Suess, “Direct calculation of the attempt frequency of magnetic structures using the finite element method,” J. Appl. Phys. 111, 093917 (2012).
http://dx.doi.org/10.1063/1.4712033
27.
27.P.F. Bessarab, V.M. Uzdin, and H. Jónsson, “Harmonic Transition State Theory of Thermal Spin Transitions,” Phys. Rev. B 85, 184409 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.184409
28.
28.I. Tudosa, M.V. Lubarda, K.T. Chan, M.A. Escobar, V. Lomakin, and E.E. Fullerton, “Thermal stability of patterned Co/Pd nanodot arrays,” Appl. Phys. Lett. 100, 102401 (2012).
http://dx.doi.org/10.1063/1.3692574
29.
29.P.F. Bessarab, V.M. Uzdin, and H. Jónsson, “Size and shape dependence of thermal spin transitions in nanoislands,” Phys. Rev. Lett. 110, 020604 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.020604
30.
30.P.F. Bessarab, V.M. Uzdin, and H. Jónsson, “Calculations of magnetic states and minimum energy paths of transitions using a noncollinear extension of the Alexander-Anderson model and a magnetic force theorem,” Phys. Rev. B 89, 214424 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.214424
31.
31.E.F. Kneller and R. Hawig, “The exchange-spring magnet: a new material principle for permanent magnets,” IEEE Trans. Magn. 27, 3588 (1991).
http://dx.doi.org/10.1109/20.102931
32.
32.R. Skomski and J.M.D. Coey, “Giant energy product in nanostructured two-phase magnets,” Phys. Rev. B 48, 15812 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.15812
33.
33.E. Goto, N. Hayashi, T. Miyashita, and K. Nakagawa, “Magnetization and Switching Characteristics of Composite Thin Magnetic Films,” J. Appl. Phys. 36, 2951 (1965).
http://dx.doi.org/10.1063/1.1714613
34.
34.K. Mibu, T. Nagahama, and T. Shinjo, “Reversible magnetization process and magnetoresistance of soft-magnetic (NiFe)/hard-magnetic (CoSm) bilayers,” J. Magn. Magn. Mater. 163, 75 (1996).
http://dx.doi.org/10.1016/S0304-8853(96)00309-5
35.
35.S. Wüchner, J. C. Toussaint, and J. Voiron, “Magnetic properties of exchange-coupled trilayers of amorphous rare-earth-cobalt alloys,” Phys. Rev. B 55, 11576 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.11576
36.
36.J-U. Thiele, S. Maat, and E.E. Fullerton, “FeRh/FePt exchange spring films for thermally assisted magnetic recording media,” Appl. Phys. Letters 82, 2859 (2003).
http://dx.doi.org/10.1063/1.1571232
37.
37.E.E. Fullerton, J.S. Jiang, M. Grimsditch, C.H. Sowers, and S.D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayers,” Phys. Rev. B 58, 12193 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12193
38.
38.E.E. Fullerton, J.S. Jiang, and S.D. Bader, “Hard/soft magnetic heterostructures: model exchange-spring magnets,” J. Magn. Magn. Mater. 200, 392 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00376-5
39.
39.J.Y. Gu, J. Burgess, and C-Y. You, “Temperature dependence of magnetization reversal processes in exchange-spring magnets,” J. Appl. Phys. 107, 103918 (2010).
http://dx.doi.org/10.1063/1.3374678
40.
40.P.F. Bessarab, V.M. Uzdin, and H. Jónsson, “Potential energy surfaces and rates of spin transitions,” Zeitschrift für Physikalische Chemie 227, 1543 (2013).
41.
41.P.F. Bessarab, V.M. Uzdin, and H. Jónsson, “Method for finding mechanism and activation energy of magnetic transitions, applied to skyrmion and antivortex annihilation,” Comput. Phys. Commun. 196, 335 (2015).
http://dx.doi.org/10.1016/j.cpc.2015.07.001
42.
42.H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 385.
43.
43.T. Leineweber and H. Kronmüller, “Magnetisation reversal modes in inhomogeneous Magnets,” Phys. Stat. Sol. (b) 201, 291 (1997).
http://dx.doi.org/10.1002/1521-3951(199705)201:1<291::AID-PSSB291>3.0.CO;2-X
44.
44.Zhihong Lu, P.B. Visscher, and W.H. Butler, “Domain Wall Switching: Optimizing the Energy Landscape,” IEEE Trans. Magn. 43, 2941 (2007).
http://dx.doi.org/10.1109/TMAG.2007.893630
45.
45.A.Yu. Dobin and H.J. Richter, “Domain wall assisted magnetic recording,” Appl. Phys. Lett. 89, 062512 (2006).
http://dx.doi.org/10.1063/1.2335590
46.
46.See supplementary material at http://dx.doi.org/10.1063/1.4942428 for the review of HTST for magnetic transitions, evaluation of the pre-exponential factor and estimation of the nucleation area.[Supplementary Material]
47.
47.H.B. Callen and E. Callen, “The Present Status of the Temperature Dependence of Magnetocrystalline Anisotropy, and the z(z+1)/2 Power Law,” J. Phys. Chem. Solids 27, 1271 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90012-6
48.
48.P. Asselin, R.F.L. Evans, J. Barker, R.W. Chantrell, R. Yanes, O. Chubykalo-Fesenko, D. Hinzke, and U. Nowak, “Constrained Monte Carlo method and calculation of the temperature dependence of magnetic anisotropy,” Phys. Rev. B 82, 054415 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.054415
49.
49.M.A. Butler, G.K. Wertheim, and D.N.E. Buchanan, “Domain and Wall Hyperfine Fields in Ferromagnetic Iron,” Phys. Rev. B 5, 990 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.990
50.
50.J.S. Jiang, J.E. Pearson, Z.Y. Liu, B. Kabius, S. Trasobares, D.J. Miller, S.D. Bader, D.R. Lee, D. Haskel, G. Srajer, and J. P. Liu, “A new approach for improving exchange-spring magnets,” J. Appl. Phys. 97, 10K311 (2005).
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942428
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942428
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942428
2016-02-16
2016-09-28

Abstract

The temperature dependence of the response of a magnetic system to an applied field can be understood qualitatively by considering variations in the energy surface characterizing the system and estimated quantitatively with rate theory. In the system analysed here, Fe/Sm-Co spring magnet, the width of the hysteresis loop is reduced to a half when temperature is raised from 25 K to 300 K. This narrowing can be explained and reproduced quantitatively without invoking temperature dependence of model parameters as has typically been done in previous data analysis. The applied magnetic field lowers the energy barrier for reorientation of the magnetization but thermal activation brings the system over the barrier. A 2-dimensional representation of the energy surface is developed and used to gain insight into the transition mechanism and to demonstrate how the applied field alters the transition path. Our results show the importance of explicitly including the effect of thermal activation when interpreting experiments involving the manipulation of magnetic systems at finite temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942428.html;jsessionid=95GnISNd96zlW-NWXMy0FAzO.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942428&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942428&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942428'
Right1,Right2,Right3,