Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
2.W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
3.J. W. Lichtman and J. A. Conchello, Nat. Methods 2, 910 (2005).
4.M. Rajendran and L. W. Miller, Biophysical Journal 109(2), 240 (2015).
5.J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, J. Biomed. Opt. 20(5), 051012 (2015).
6.O. Mongin, L. Porrés, L. Moreaux, J. Mertz, and M. Blanchard-Desce, Org. Lett. 4(5), 719 (2002).
7.G. S. He, L-S. Tan, Q. D. Zheng, and P. N. Prasad, Chem. Rev. 108, 1245 (2008).
8.Y. C. Wang, D. K. Zhang, H. Zhou, Q. Chen, Y. Xiao, and S. X. Qian, J. Appl. Phys. 108, 0..520 (2010).
9.M. Albota, D. Beljonne, J-L. Brédas, J. E. Ehrlich, J-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X-L. Wu, and C. Xu, Science 281, 1653 (1998).
10.S. -J. Chung, K-S. Kim, T. -C. Lin, G. S. He, J. Swiatkiewicz, and P. N. Prasad, J. Phys. Chem. B 103, 10741 (1999).
11.J. Yoo, S. K. Yang, M-Y. Jeong, H. C. Ahn, S-J. Jeon, and B. R. Cho, Org. Lett. 5, 645 (2003).
12.J. L. Hua, B. Li, F. S. Meng, F. Ding, S. X. Qian, and H. Tian, Polymer 45, 7143 (2004).
13.A. Bhaskar, G. Ramakrishna, Z. K. Lu, R. Twieg, J. M. Hales, D. J. Hagan, E. Van Stryland, and T. Goodson III., J. Am. Chem. Soc. 128, 11840 (2006).
14.M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Y. Suo, and C. W. Spangler, J. Phys. Chem. B 107, 7540 (2003).
15.B. Xu, H. H. Fang, F. P. Chen, H. G. Lu, J. T. He, Y. W. Li, Q. D. Chen, H. B. Sun, and W. J. Tian, New J. Chem. 33, 2457 (2009).
16.M. Williams-Harry, A. Bhaskar, G. Ramakrishna, T. Goodson III., M. Imura, A. Mawatari, K. Nakao, H. Enozawa, T. Nishinaga, and M. Iyoda, J. Am. Chem. Soc. 130, 3252 (2008).
17.Y. L. Liu, C. F. Zhang, R. Wang, B. Zhang, Z. N. Tan, X. Y. Wang, and M. Xiao, Angew. Chem. Int. Ed. 54(21), 6222 (2015).
18.M. Drobizhev, A. Karotki, A. Rebane, and C. W. Spangler, Opt. Lett. 26, 1081 (2001).
19.B. Li, R. Tong, R. Y. Zhu, F. S. Meng, H. Tian, and S. X. Qian, J. Phys. Chem. B 109, 10705 (2005).
20.J. Mi, B. Li, R. Y. Zhu, W. M. Liu, S. X. Qian, F. S. Meng, and H. Tian, Appl. Phys. B 80, 541 (2005).
21.S. -J. Chung, T. –C. Lin, K. –S. Kim, G. S. He, J. Swiatkiewicz, P. N. Prasad, G. A. Baker, and F. V. Bright, Chem. Mater. 13, 4071 (2001).
22.B. Gu, W. Ji, P. S. Patil, and S. M. Dharmaprakash, J. Appl. Phys. 103, 103511 (2008).
23.H. B. Xiao, X. M. Tao, Y. C. Wang, S. X. Qian, G. H. Shi, and H. Li, Tetrahedron Lett. 48, 6819 (2008).
24.H. B. Xiao, C. Mei, Y. C. Wang, H. Li, S. X. Qian, H. Y. Yin, and Z. S. Xu, Mat. Chem. Phys. 130, 897 (2011).
25.C. Altucci, A. Nebbioso, R. Benedetti, R. Esposito, V. Carafa, M. Conte, M. Micciarelli, L. Altucci, and R. Velotta, Laser Phys. Lett. 9(3), 234 (2012).
26.D. K. Zhang, Y. C. Wang, Y. Xiao, S. X. Qian, and X. H. Qian, Tetrahedron 404, 2022 (2009).
27.M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Vanstryland, IEEE J. Quantum Electron. 26, 760 (1990).
28.J. Mi, L. J. Guo, Y. Liu, W. M. Liu, G. J. You, and S. X. Qian, Phys. Lett. A 310, 486 (2003).
29.H. J. Xia, J. T. He, P. Peng, Y. H. Zhou, Y. W. Li, and W. J. Tian, Tetrahedron Lett. 48, 5877 (2007).
30.H. J. Lee, J. Sohn, J. Wwang, and S. Y. Park, Chem. Mater. 16, 456 (2004).
31.L. Z. Wu, X. J. Tang, M. H. Jiang, and C. H. Tung, Chem. Phys. Lett. 315, 379 (1999).
32.Y. C. Wang, D. K. Zhang, H. Zhou, J. L. Ding, Q. Chen, Y. Xiao, and S. X. Qian, J. Appl. Phys. 108, 033520 (2010).
33.I. Fuks-Janczarek, B. Sahraoui, I. V. Kityk, and J. Berdowski, Opt. Commun. 236, 159 (2004).
34.H. Liu, H. Zhang, J. -H. Si, L. -H Yan, F. Chen, and X. Hou, Chin. Phys. Lett. 28(8), 086602 (2011).

Data & Media loading...


Article metrics loading...



A dipolar dipicolinate derivative, trans-dimethyl-4-[4′-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate , and a based V-shaped compound, {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N-phenyl-N-{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]}aniline , with intense two-photonfluorescence emission properties were systematically investigated by using steady-state absorption and fluorescence spectroscopy, open-aperture Z-scans, and two-photon excited fluorescence (TPF). The two-photonabsorption cross-section of the V-shaped compound in tetrahydrofuran (THF) was determined to be 208 GM, which represents a 6.5-fold enhancement compared with its dipolar counterpart (32 GM). Extension of the intramolecular charge transfer (ICT) in the V-shaped dipicolinate derivative has been suggested as the mechanism of enhancement. The excited state dynamics from transient absorption spectroscopy were analyzed and discussed. The formation and relaxation lifetimes of the ICT state for these dipicolinate derivatives in THF solutions were found to be several picoseconds and several hundred picoseconds, respectively. The results show an increased ICT character of the V-shaped compound and a potential application for this compound in two-photonfluorescence imaging fields.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd