Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942460
1.
1.Y.Q. Liu, Z.L. An, Q.Q. Yin, F.H. Zheng, Y.W. Zhang, and Q.Q. Lei, J. Appl. Phys. 113, 164105 (2013).
http://dx.doi.org/10.1063/1.4803505
2.
2.K. Hermann, Gas-insulated transmission lines (John Wiley & Sons, Ltd., Publication, IEEE Press, Manhattan, 2012).
3.
3.G. Teyssedre, C. Laurent, G. Perego, and G. C. Montanari, IEEE Trans. Dielectr. Electr. Insul. 16, 232 (2009).
http://dx.doi.org/10.1109/TDEI.2009.4784572
4.
4.D.M. Wu, Fundamentals of solid physics (Higher Education Press, Beijing, 2015).
5.
5.F. Baudoin, D H Mills, P L Lewin, S Le Roy, G Teyssedre, and C Laurent, J. Phys. D: Appl. Phys. 44, 165402 (2011).
http://dx.doi.org/10.1088/0022-3727/44/16/165402
6.
6.M. Fukuma, G. Teyssedre, C. Laurent, and K. Fukunaga, J. Appl. Phys. 98, 093528 (2005).
http://dx.doi.org/10.1063/1.2128050
7.
7.G. Teyssedre and C. Laurent, J. Appl. Phys. 103, 046107 (2008).
http://dx.doi.org/10.1063/1.2875165
8.
8.T. Lebey and C. Laurent, J. Appl. Phys. 68(1), 275 (1990).
http://dx.doi.org/10.1063/1.347197
9.
9.M. Kosaki, N. Shimizu, and K. Horii, IEEE Trans. Dielectr. Electr. Insul. EI-12, 40 (1977).
http://dx.doi.org/10.1109/TEI.1977.298006
10.
10.E. Aubert, G. Teyssedre, C Laurent, S Rowe, and S Robiani, J. Phys. D: Appl. Phys. 42, 165501 (2009).
http://dx.doi.org/10.1088/0022-3727/42/16/165501
11.
11.A. P. Kharitonov and L. N. Kharitonova, Pure Appl. Chem. 81, 451 (2009).
http://dx.doi.org/10.1351/PAC-CON-08-06-02
12.
12.A. Tressaud, E. Durand, C. Labrugere, A.P. Kharitonov, and L.N. Kharitonova, J. Fluorine Chem. 128, 378 (2007).
http://dx.doi.org/10.1016/j.jfluchem.2006.12.015
13.
13.B. Zhang, G. Zhang, Q. Wang, C. Li, J. He, and Z. An, AIP Advances 5, 127207 (2015).
http://dx.doi.org/10.1063/1.4937626
14.
14.Y. Liu, Z. An, J. Cang, Y. Zhang, and F. Zheng, IEEE Trans. Electr. Insul. 19, 1143 (2012).
http://dx.doi.org/10.1109/TDEI.2012.6259982
15.
15.Z. An, C. Liu, X. Chen, F. Zheng, and Y. Zhang, J. Phys. D: Appl. Phys. 45, 035302 (2012).
http://dx.doi.org/10.1088/0022-3727/45/3/035302
16.
16.Y. Liu, Z. An, Q. Yin, Fei. Z, Q. Lei, and Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 22, 526 (2015).
http://dx.doi.org/10.1109/TDEI.2014.004551
17.
17.X. Chen, Z. An, C. Liu, Y. Zhang, and F. Zheng, Acta Phys. Sin. 61, 138201 (2012) (in Chinese).
18.
18.Y. Jiang, Z. An, C. Liu, F. Zheng, and Y. Zhang, IEEE Trans. Dielectr. Electr. Insul. 17, 1814 (2010).
http://dx.doi.org/10.1109/TDEI.2010.5658233
19.
19.A. Mohamad, G. Chen, Y. Zhang, and Z. An, IEEE Trans. Dielectr. Electr. Insul. 22, 101 (2015).
http://dx.doi.org/10.1109/TDEI.2014.004574
20.
20.B. X. Du, Jie Li, and Wei Du, IEEE Trans. Dielectr. Electr. Insul. 20, 947 (2013).
http://dx.doi.org/10.1109/TDEI.2013.6518964
21.
21.B. X. Du, Jie Li, and Wei Du, IEEE Trans. Dielectr. Electr. Insul. 20, 1764 (2013).
http://dx.doi.org/10.1109/TDEI.2013.6633707
22.
22.B. X. Du, H. Du, and Jie Li, IEEE Trans. Dielectr. Electr. Insul. 21, 1887 (2014).
http://dx.doi.org/10.1109/TDEI.2014.004338
23.
23.B. X. Du and Z. L. Li, IEEE Trans. Dielectr. Electr. Insul. 22, 934 (2015).
http://dx.doi.org/10.1109/TDEI.2015.7076794
24.
24.C. Le Gressus and G. Blaise, IEEE Trans. Dielectr. Electr. Insul. 27, 472 (1992).
http://dx.doi.org/10.1109/14.142709
25.
25.A.P. Kharitonov, Prog. Org. Coat. 61, 192 (2008).
http://dx.doi.org/10.1016/j.porgcoat.2007.09.027
26.
26.David M. Lemal, J. Org. Chem. 69, 1 (2004).
http://dx.doi.org/10.1021/jo0302556
27.
27.Y.Q. Liu, Z.L. An, Q.Q. Yin, F.H. Zheng, Q.Q. Lei, and Y.W. Zhang, IEEE Trans. Dielectr. Electr. Insul. 20, 1859 (2013).
http://dx.doi.org/10.1109/TDEI.2013.6633718
28.
28.D.E. Herr, N.A. Nikolic, and R.A. Schultz, High Perform. Polym. 13, 79 (2001).
http://dx.doi.org/10.1088/0954-0083/13/3/302
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942460
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942460
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942460
2016-02-17
2016-10-01

Abstract

Epoxy resins blended with micro-sized alumina show more compact surface condition and exhibit lower light emission after modified in fluorinated atmosphere. Surface morphology reflected by atomic force microscope shows that the fluorinated surface layer can overlap alumina particles inlayed in the original surface and a smoother and more compact surface condition is generated. Thermally stimulated current test exhibits that surface fluorination is able to bring more shallow traps to surface states, and the trap amount increases with the extension of fluorinating time. The photon counting technique illustrates that the fluorinated surface has lower light emission which indicates better aging inhibition properties. Therefore, we believe that the surface fluorination technique may have potential significance in modifying epoxy based insulators used in high voltage applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942460.html;jsessionid=C_qqPj7EGAfHFcElin901WHu.x-aip-live-02?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942460&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942460&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942460'
Right1,Right2,Right3,