Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942461
1.
1.J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, Nat. Photon. 6, 488 (2012).
http://dx.doi.org/10.1038/nphoton.2012.138
2.
2.N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, Science 340, 1545 (2013).
http://dx.doi.org/10.1126/science.1237861
3.
3.G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi1, Phys. Rev. Lett. 113, 060503 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.060503
4.
4.S. Franke-Arnold, L. Allen, and M. Padgett, Laser photon. Rev. 2, 299 (2008).
http://dx.doi.org/10.1002/lpor.200810007
5.
5.V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Sulssarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, and F. Sciarrinao, Nat. Commun. 4, 2432 (2013).
6.
6.Z.-Y. Zhou, Y. Li, D.-S. Ding, Y.-K. Jiang, W. Zhang, S. Shi, B.-S. Shi, and G.-C. Guo, Opt. Lett. 39, 5098 (2014).
http://dx.doi.org/10.1364/OL.39.005098
7.
7.M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, Science 341, 537 (2013).
http://dx.doi.org/10.1126/science.1239936
8.
8.J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Nat. Phys. 4, 282 (2008).
http://dx.doi.org/10.1038/nphys919
9.
9.E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, Nat. Photon. 3, 720 (2009).
http://dx.doi.org/10.1038/nphoton.2009.214
10.
10.J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, Science 329, 662 (2010).
http://dx.doi.org/10.1126/science.1190523
11.
11.R. Fickler, R. Lapkiewicz, W. N. plick, M. Krenn, C. Schaeff, S. Ramelow, and A. Zeilinger, Science 338, 640 (2012).
http://dx.doi.org/10.1126/science.1227193
12.
12.A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, Nat. Phys. 7, 677 (2011).
http://dx.doi.org/10.1038/nphys1996
13.
13.P. Kok, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.135
14.
14.J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, Rev. Mod. Phys. 84, 777 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.777
15.
15.J. Barreiro, N. Langford, N. Peters, and P. Kwiat, Phys. Rev. Lett. 95, 260501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.260501
16.
16.G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Phys. Rev. A 79, 030301(R) (2009).
http://dx.doi.org/10.1103/PhysRevA.79.030301
17.
17.R. Ceccarelli, G. Vallone, F. De Martini, P. Mataloni, and A. Cabello, Phys. Rev. Lett. 103, 160401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.160401
18.
18.J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, Nat. Phys. 4, 282286 (2008).
http://dx.doi.org/10.1038/nphys919
19.
19.D. S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo, Nat. Commun. 4, 2527 (2013).
20.
20.D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, J.-S. Pan, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, Phys. Rev. A. 90, 042301 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.042301
21.
21.A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, Nat. Photon. 8, 234 (2014).
http://dx.doi.org/10.1038/nphoton.2013.355
22.
22.D.-S. Ding, W. Zhang, Z.-Y. Zhou, S. Shi, G.-Y. Xiang, X.-S. Wang, Y.-K. Jiang, B.-S. Shi, and G.-C. Guo, Phys. Rev. Lett. 114, 050502 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.050502
23.
23.V. Parigi, V. D’Ambrosioy, C. Arnoldy, L. Marrucci, F. Sciarrino, and J. Laurat, Nat. Commun. 6, 7706 (2015).
http://dx.doi.org/10.1038/ncomms8706
24.
24.Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2556
25.
25.C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, Phys. Rev. Lett. 97, 223601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.223601
26.
26.F. Y. Wang, B. S. Shi, and G. C. Guo, Opt. Lett. 33, 2191 (2008).
http://dx.doi.org/10.1364/OL.33.002191
27.
27.X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, Phys. Rev. Lett. 101, 190501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.190501
28.
28.M. Scholz, L. Koch, and O. Benson, Phys. Rev. Lett. 102, 063603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.063603
29.
29.E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, New J. Phys. 11, 113042 (2009).
http://dx.doi.org/10.1088/1367-2630/11/11/113042
30.
30.F. Wolfgramm, Y. A. de I. Astiz, F. A. Beduini, A. Cerè, and M. W. Mitchell, Phys. Rev. Lett. 106, 053602 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.053602
31.
31.J. Fekete, D. Rieländer, M. Cristiani, and H. de Riedmatten, Phys. Rev. Lett. 110, 220502 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.220502
32.
32.Z.-Y. Zhou, D.-S. Ding, Y. Li, F.-Y. Wang, and B.-S. Shi, J. Opt. Soc. Am. B 31, 128 (2014).
http://dx.doi.org/10.1364/JOSAB.31.000128
33.
33.K. Liu, J. Guo, C. Cai, S. Guo, and J. Gao, Phys. Rev. Lett. 110, 220501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.220501
34.
34.Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, Laser Physics 20, 1211 (2010).
http://dx.doi.org/10.1134/S1054660X10090409
35.
35.R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
http://dx.doi.org/10.1007/BF00702605
36.
36.A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, Nature 423, 731 (2003).
http://dx.doi.org/10.1038/nature01714
37.
37.M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, Opt. Lett. 40, 200 (2015).
http://dx.doi.org/10.1364/OL.40.002000
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942461
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942461
2016-02-17
2016-09-29

Abstract

The spatial modes of light have grasped great research interests because of its great potentials in optical communications, optical manipulation and trapping, optical metrology and quantum information processing. Here we report on generating of photon pairs in Hermite-Gaussian (HG) mode in a type-I optical parametric oscillator operated far below threshold. The bandwidths of the photon pairs are 11.4 MHz and 20.8MHz for two different HG modes respectively, therefore the photons can be stored in cold Rubidium atomic ensembles. The non-classical properties of HG modes are clearly verified by the violation of Cauchy-Schwarz inequality. Our study provides an effective way to generatephoton pairs with narrow bandwidth in high order spatial modes for high dimensional quantum communication.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942461.html;jsessionid=9WW3CuMPYGeu2VkhmZ2sT2gg.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942461&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942461'
Right1,Right2,Right3,