Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942476
1.
1.A.W. Sisko, “The flow of lubricating greases,” Industrial Engineering Chemical Research 50, 1789-1792 (1958).
http://dx.doi.org/10.1021/ie50588a042
2.
2.F.T. Akyildiz, K. Vajravelu, R.N. Mohapatra, E. Sweet, and R.A. Van Gorder, “Implicit differential equation arising in the steady flow of a Sisko fluid,” Applied Mathematics and Computation 210, 189-196 (2009).
http://dx.doi.org/10.1016/j.amc.2008.12.073
3.
3.Kh.S. Mekhimer and M.A. El Kot, “Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis,” Applied Mathematical Modelling 36, 5393-5407 (2012).
http://dx.doi.org/10.1016/j.apm.2011.12.051
4.
4.M. Khan, S. Munawar, and S. Abbasbandy, “Steady flow and heat transfer of a Sisko fluid in annular pipe,” International Journal of Heat and Mass Transfer 53, 1290-1297 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.037
5.
5.M. Khan, Q. Abbas, and K. Duru, “Magnetohydrodynamic flow of a Sisko fluid in annular pipe; A numerical study,” International Journal of Numerical Methods for Fluids 62, 1169-1180 (2010).
6.
6.S. Nadeem and N.S. Akbar, “Peristaltic flow of Sisko fluid in a uniform inclined tube,” Acta Mechanica Sin 26, 675-683 (2010).
http://dx.doi.org/10.1007/s10409-010-0356-1
7.
7.N.S. Akber, “Peristaltic Sisko nano fluid in an asymmetric channel,” Applied Nanoscince 4, 663-673 (2014).
http://dx.doi.org/10.1007/s13204-013-0205-1
8.
8.H. Alfven, “Existence of electromagnetic-hydrodynamic waves,” Nature 150, 405 (1942).
http://dx.doi.org/10.1038/150405d0
9.
9.K.L. Hsiao, “Heat and mass mixed convection for MHD visco-elastic fluid past a stretching sheet with ohmic dissipation,” Commun Nonlinear Sci Numer Simulat 15, 1803-1812 (2010).
http://dx.doi.org/10.1016/j.cnsns.2009.07.006
10.
10.K.L. Hsiao, “MHD stagnation point viscoelastic fluid flow and heat transfer on a thermal forming stretching sheet with viscous dissipation,” Canadian Journal of Chemical Engineering 89, 1228-1235 (2011).
http://dx.doi.org/10.1002/cjce.20474
11.
11.K.L. Hsiao, “MHD mixed convection for viscoelastic fluid past a porous wedge,” International Journal of Non-Linear Mechanics 46, 18 (2011).
http://dx.doi.org/10.1016/j.ijnonlinmec.2010.06.005
12.
12.S. Nadeem, R. Haq, N.S. Akbar, and N.H. Khan, “MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet,” Alexendera Engineering Journal 52, 577-582 (2013).
http://dx.doi.org/10.1016/j.aej.2013.08.005
13.
13.S. Akram and S. Nadeem, “Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel:closed form solutions,” Journal of Magnistisam and Magnatic Materials 328, 11-20 (2013).
http://dx.doi.org/10.1016/j.jmmm.2012.09.052
14.
14.M.Y. Malik and T. Salahuddin, “Numerical solution of MHD stagnation point flow of Williamson fluid over stretching cylinder,” International Journal of Nonlinear Science and Simulation 16, 1614-164 (2015).
15.
15.M.Y. Malik, T. Salahuddin, Arif. Hussain, and S. Bilal, “MHD flow of tangent hyperbolic fluid over a stretching cylinder: Using Keller box method,” Journal of Magnetism and Magnetic Materials 395, 271-276 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.07.097
16.
16.M.Y. Malik, Arif Hussain, T. Salahuddin, and M. Awais, “Numerical Solution of MHD Sisko fluid over a stretching cylinder and heat transfer analysis,” International Journal of Numerical Methods for & Heat Fluid flows (2015), DOI: 10.1108/HFF-06-2015-0211.
17.
17.K.A. Yih, “Free convection effect on MHD coupled heat and mass transfer of a moving permeable vertical surface,” International Communications in Heat and Mass Transfer 26, 95-104 (1999).
http://dx.doi.org/10.1016/S0735-1933(98)00125-0
18.
18.S.J. Liao, “On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet,” Journal of Fluid Mechanics 488, 189-212 (2003).
http://dx.doi.org/10.1017/S0022112003004865
19.
19.R. Cortell, “A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet,” Applied Mathematics and Computation 168, 557-566 (2005).
http://dx.doi.org/10.1016/j.amc.2004.09.046
20.
20.F.M. Ali, R. Nazar, N.M. Arifin, and I. Pop, “Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate,” Meccanica 46, 1103-1112 (2011).
http://dx.doi.org/10.1007/s11012-010-9371-3
21.
21.G.R. Machireddy, “Influence of thermal radiation, viscous dissipation and Hall current on MHD convection flow over a stretched vertical flat plate,” Ain Shams Engineering Journal 5, 169-175 (2014).
http://dx.doi.org/10.1016/j.asej.2013.08.003
22.
22.B.C. Sakiadis, “Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow,” AIChE Journal 7, 26-28 (1961).
http://dx.doi.org/10.1002/aic.690070108
23.
23.L.J. Crane, “Flow past a Stretching Plate,” Journal of Applied Mathematics and Physics 21, 645-647 (1970).
http://dx.doi.org/10.1007/BF01587695
24.
24.P.S. Gupta and A.S. Gupta, “Heat and mass transfer on stretching sheet with suction or blowing,” Canadian Journal of Chemical Engineering 55, 744-746 (1977).
http://dx.doi.org/10.1002/cjce.5450550619
25.
25.B.K. Dutta, P. Roy, and A.S. Gupta, “Temperature field in flow over a stretching surface with uniform heat flux,” International Communications in Heat and Mass Transfer 12, 89-94 (1985).
http://dx.doi.org/10.1016/0735-1933(85)90010-7
26.
26.K. Zaimi and A. Ishak, “Boundary Layer Flow and Heat Transfer over a Permeable Stretching/Shrinking Sheet with a Convective Boundary Condition,” Journal of Applied Mechanics 8, 499-505 (2015).
27.
27.S. Nadeem and C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface,” Nanoscale Research Letter (2012), DOI:10.1186/1556-276X-7-94.
28.
28.M.Y. Malik, M. Naseer, S. Nadeem, and A. Rehman, “The boundary layer flow of Casson nanofluid over a vertical exponentially stretching cylinder,” Applied Nanoscince (2014), DOI 10.1007/s13204-013-0267-0.
29.
29.K. Vajravelu, K.V. Prasad, S.R. Santhi, and V. Umesh, “Fluid Flow and Heat Transfer over a Permeable Stretching Cylinder,” Journal of Applied Fluid Mechanics 7, 111-120 (2014).
30.
30.I.A. Hassanien, A.A. Abdullah, and R.S. Gorla, “Flow and heat transfer in a power-law fluid over a non-isothermal stretching sheet,” Mathematical and Computer Modelling 28, 105-116 (1998).
http://dx.doi.org/10.1016/S0895-7177(98)00148-4
31.
31.H.I Andersson and V. Kumaran, “On sheet-driven motion of power-law fluids,” International Journal of Non-Linear Mechanics 41, 1228-1234 (2006).
http://dx.doi.org/10.1016/j.ijnonlinmec.2006.12.006
32.
32.T.C. Chiam, “Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet,” Acta Mechanica 129, 63-72 (1998).
http://dx.doi.org/10.1007/BF01379650
33.
33.M. Mishra, N. Ahmad, and Z.U. Siddiqui, “Unsteady Boundary Layer Flow past a Stretching Plate and Heat Transfer with Variable Thermal Conductivity,” World Journal of Mechanics 2, 35-41 (2012).
http://dx.doi.org/10.4236/wjm.2012.21005
34.
34.R.R. Rangi and N. Ahmad, “Boundary layer flow past over the stretching cylinder with variable thermal conductivity,” Applied Mathematics 3, 205-209 (2012).
http://dx.doi.org/10.4236/am.2012.33032
35.
35.P.K. Singh, “Boundary Layer Flow in Porous Medium Past a Moving Vertical Plate with Variable Thermal Conductivity and Permeability,” International Journal of Engineering Research and Development 1, 22-26 (2012).
36.
36.L. Miaoa, W.T. Wua, N. Aubryb, and M. Massoudic, “Heat transfer and flow of a slag-type non-linear fluid: Effects of variable thermal conductivity,” Applied Mathematics and Computation 227, 77-91 (2014).
http://dx.doi.org/10.1016/j.amc.2013.11.010
37.
37.M.S. Abel, P.S. Datti, and N. Mahesha, “Flow and heat transfer in a power-law fluid over a stretching sheet with variable thermal conductivity and non-uniform heat source,” International Journal of Heat and Mass Transfer 52, 2902-2913 (2009).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.08.042
38.
38.A.K. Jhankal, “MHD Boundary Layer Flow near Stagnation Point of Linear Stretching Sheet with Variable Thermal Conductivity via Hes Homotopy Perturbation Method,” Journal of Applied Fluid Mechanics 8, 571-578 (2015).
39.
39.L. Miaoa and M. Massoudic, “Heat transfer analysis and flow of a slag-type fluid: Effects of variable thermal conductivity and viscosity,” International Journal of Nonlinear Mechanics 76, 8-19 (2015).
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.05.001
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942476
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942476
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942476
2016-02-17
2016-12-07

Abstract

In present study effects of magnetic field and variable thermal conductivity on Sisko fluid model are analyzed. The modeled partial differential equations are simplified by boundary layer approach. Appropriate similarity transformations are applied to transform governing partial differential equations into ordinary differential equations. Then these equations are solved numerically by shooting method in combination with Runge-Kutta-Fehlberg method. Comparison between present and previous computed results is presented via tables. The variations in fluid velocity and temperature are displayed through graphs for different values of Sisko fluid parameter, curvature parameter, magnetic field parameter, thermal conductivity parameter and Prandtl number. The effects of physical parameters on skin friction coefficient and local Nusselt number are exhibited with figures and tables.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942476.html;jsessionid=crcdzv3ogEOmb_Xprb4hiAir.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942476&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942476&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942476'
Right1,Right2,Right3,