Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv Mater 21(25-26), 2632 (2009).
2.J. J. S. Yang, D. B. Strukov, and D. R. Stewart, Nat Nanotechnol 8(1), 13 (2013).
3.Y. L. Chung, W. H. Cheng, J. S. Jeng, W. C. Chen, S. A. Jhan, and J. S. Chen, J Appl Phys 116(16), (2014).
4.Y. Huang, Y. Luo, Z. H. Shen, G. L. Yuan, and H. B. Zeng, Nanoscale Res Lett 9 (2014).
5.D. Panda, A. Dhar, and S. K. Ray, Ieee T Nanotechnol 11(1), 51 (2012).
6.J. Shang, G. Liu, H. L. Yang, X. J. Zhu, X. X. Chen, H. W. Tan, B. L. Hu, L. Pan, W. H. Xue, and R. W. Li, Adv Funct Mater 24(15), 2171 (2014).
7.J. Sun, Q. Liu, H. W. Xie, X. Wu, F. Xu, T. Xu, S. B. Long, H. B. Lv, Y. T. Li, L. T. Sun, and M. Liu, Appl Phys Lett 102(5), (2013).
8.Z. D. Xu, L. N. Yu, X. G. Xu, J. Miao, and Y. Jiang, Appl Phys Lett 104(19), (2014).
9.F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mat Sci Eng R 83, 1 (2014).
10.F. Yang, M. Wei, and H. Deng, J Appl Phys 114(13), (2013).
11.Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett 9(4), 1636 (2009).
12.X. M. Chen, W. Hu, S. X. Wu, and D. H. Bao, Appl Phys Lett 104(4), (2014).
13.D. Lee, J. Woo, E. Cha, S. Park, S. Lee, J. Park, and H. Hwang, Ieee Electr Device L 34(10), 1250 (2013).
14.Y. C. Yang, S. Choi, and W. Lu, Nano Lett 13(6), 2908 (2013).
15.L. W. Zhou, X. L. Shao, X. Y. Li, H. Jiang, R. Chen, K. J. Yoon, H. J. Kim, K. L. Zhang, J. S. Zhao, and C. S. Hwang, Appl Phys Lett 107(7), (2015).
16.D. Y. Cho, J. Song, K. D. Na, C. S. Hwang, J. H. Jeong, J. K. Jeong, and Y. G. Mo, Appl Phys Lett 94(11), (2009).

Data & Media loading...


Article metrics loading...



We carry out a comparative study on resistive switching in CuO/ZnO bilayer films; both samples grown Pt and Agelectrodes show bipolar switching behaviors. The two kinds of current-voltage curves reveal the different resistive switching behaviors in Pt/CuO/ZnO/Pt and Ag/CuO/ZnO/Pt, respectively. We conjecture that the formation and rupture of conducting filaments are responsible for the switching effect. Filaments induced by migration of oxygen ions are responsible for resistive switching with the Pt electrode. In contrast, resistive switching with the Agelectrode is attributed to the migration of metal cations and the corresponding electrochemical metallization. It is also inferred that the characteristic nature of the conducting filaments influences many aspects of switching characteristics, including the switching voltages and cycling variations at room temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd