Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942489
1.
1.Y. M. Lu, Y. Choi, C. M. Ortega, X. M. Cheng, J. W. Cai, S. Y. Huang, L. Sun, and C. L. Chien, Phys. Rev. Lett. 110, 147207 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.147207
2.
2.Y. M. Lu, J. W. Cai, S. Y. Huang, D. Qu, B. F. Miao, and C. L. Chien, Phys. Rev. B 87, 220409(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.87.220409
3.
3.B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Phys. Rev. Lett. 112, 236601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.236601
4.
4.S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu, T.-Y. Chen, J. Q. Xiao, and C. L. Chien, Phys. Rev. Lett. 109, 107204 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.107204
5.
5.W. Zhang, M. B. Jungfleisch, W. J. Jiang, Y. H. Liu, J. E. Pearson, S. G. E. te Velthuis, and A. Hoffmann, Phys. Rev. B 91, 115316 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.115316
6.
6.G. Y. Guo, Q. Niu, and N. Nagaosa, Phys. Rev. B 89, 214406 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.214406
7.
7.W. L. Lim, N. Ebrahim-Zadeh, J. C. Owens, H. G. E. Hentschel, and S. Urazhdin, Appl. Phys. Lett. 102, 162404 (2013).
http://dx.doi.org/10.1063/1.4802954
8.
8.E. H. Hall, Philos. Mag. 12, 157 (1881).
http://dx.doi.org/10.1080/14786448108627086
9.
9.J. Sinova, Phys. Rev. Lett. 92, 126603 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.126603
10.
10.J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
11.
11.I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90076-3
12.
12.T. Moriya, Phys. Rev. 120, 91 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
13.
13.Y. Q. Zhang, N. Y. Sun, W. R. Che, X. L. Li, J. W. Zhang, R. Shan, Z. G. Zhu, and G. Su, Appl. Phys. Lett. 107, 082404 (2015).
http://dx.doi.org/10.1063/1.4929585
14.
14.L. F. Yin, D. H. Wei, N. Lei, L. H. Zhou, C. S. Tian, G. S. Dong, X. F. Jin, L. P. Guo, Q. J. Jia, and R. Q. Wu, Phys. Rev. Lett. 97, 067203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067203
15.
15.Y. Q. Zhang, N. Y. Sun, R. Shan, J. W. Zhang, S. M. Zhou, Z. Shi, and G. Y. Guo, J. Appl. Phys. 114, 163714 (2013).
http://dx.doi.org/10.1063/1.4827198
16.
16.N. Nakajima, T. Koide, T. Shidara, H. Miyauchi, H. Fukutani, A. Fujimori, K. Iio, T. Katayama, M. Nývlt, and Y. Suzuki, Phys. Rev. Lett. 81, 5229 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5229
17.
17.W. J. Antel, Jr., M. M. Schwickert, T. Lin, W. L. O’Brien, and G. R. Harp, Phys. Rev. B 60, 12933 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.12933
18.
18.C. Feng, X. Z. Mei, M. Y. Yang, N. Li, Y. Jiang, G. H. Yu, and F. M. Wang, J. Appl. Phys. 109, 063918 (2011).
http://dx.doi.org/10.1063/1.3567924
19.
19.Y. Tian, L. Ye, and X. F. Jin, Phys. Rev. Lett. 103, 087206 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.087206
20.
20.A. Crépieux and P. Bruno, Phys. Rev. B 64, 014416 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.014416
21.
21.Y. Kota and A. Sakuma, J. Phys. Soc. Jpn. 83, 034715 (2014).
http://dx.doi.org/10.7566/JPSJ.83.034715
22.
22.J. Büemann, F. Gebhard, T. Ohm, S. Weiser, and W. Weber, Phys. Rev. Lett. 101, 236404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.236404
23.
23.S. Cho, S. C. Baek, K.-D. Lee, Y. Jo, and B.-G. Park, Sci. Rep. 5, 14668 (2015).
http://dx.doi.org/10.1038/srep14668
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942489
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942489
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942489
2016-02-17
2016-09-30

Abstract

There are two mechanisms which could enhance spin-dependent scattering in a low dimensional Pt/Ferromagnetic metal structure. One is magnetic proximity effect. The other is spin orbit couplingproximity effect which was suggested recently. This work demonstrates that, through a series of experiments on anomalous Hall effect, the spin orbit couplingproximity effect dominates the enhancement in very thin Pt/Permalloy bilayers. It may help to find a way to optimize magnetic transport property of spintronics devices in which the spin orbit coupling is deeply involved.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942489.html;jsessionid=NO-EPHaLrmZ4E0V5TR5F_SKv.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942489&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942489&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942489'
Right1,Right2,Right3,