Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Manzoor, S. R. Vadera, N. Kumar, and T. R. N. Kutty, Materials Chemistry and Physics 82, 718 (2003).
2.C. Ma, D. Moore, J. Li, and Z. L. Wang, Advanced Materials 15, 228 (2003).
3.B. L. Zhu, X. Chen, L.-M. Xu, H.-G. Liu, Z.-M. Sui, and J. Liu, Thin Solid Films 474, 114 (2005).
4.S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, and H. Manuspiya, Solid State Sciences 14, 299 (2012).
5.N. Dixit, H. Soni, M. Chawda, and D. Bodas, Materials Letters 63, 2669 (2009).
6.V. Ramasamy, K. Praba, and G. Murugadoss, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96, 963 (2012).
7.K. T. A. Rasoul, N. K. A., and Z. J. S., Int. J. Electrochem. Sci. 8, 5594 (2013).
8.A. K. Kole and P. Kumbhakar, Applied Nanoscience 2, 15 (2011).
9.N. Tri Tuan, T. Xuan Anh, N. Le Hung, and P. Thanh Huy, Advances in Natural Sciences: Nanoscience and Nanotechnology 2, 035008 (2011).
10.H. Hu and W. Zhang, Optical Materials 28, 536 (2006).
11.J. Singh, P. Kumar, K. S. Hui, K. N. Hui, K. Ramam, R. S. Tiwari, and O. N. Srivastava, CrystEngComm 14, 5898 (2012).
12.G. Wang, B. Huang, Z. Li, Z. Lou, Z. Wang, Y. Dai, and M.-H. Whangbo, Scientific Reports 5, 8544 (2015).
13.C. S. Chang, J. L. He, and Z. P. Lin, Wear 255, 115 (2003).
14.H. K. Sadekar, N. G. Deshpande, Y. G. Gudage, A. Ghosh, S. D. Chavhan, S. R. Gosavi, and R. Sharma, Journal of Alloys and Compounds 453, 519 (2008).
15.B. Barman and K. C. Sarma, Chalcogenide Letters 8, 171 (2011).
16.V. Sallet, A. Lusson, M. Rommeluere, and O. Gorochov, Journal of Crystal Growth 220, 209 (2000).
17.G. Paolo, B. Stefano, B. Nicola, C. Matteo, C. Roberto, C. Carlo, C. Davide, L. C. Guido, C. Matteo, D. Ismaila, C. Andrea Dal, G. Stefano de, F. Stefano, F. Guido, G. Ralph, G. Uwe, G. Christos, K. Anton, L. Michele, M.-S. Layla, M. Nicola, M. Francesco, M. Riccardo, P. Stefano, P. Alfredo, P. Lorenzo, S. Carlo, S. Sandro, S. Gabriele, P. S. Ari, S. Alexander, U. Paolo, and M. W. Renata, Journal of Physics: Condensed Matter 21, 395502 (2009).
18.J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
19.Hendrik J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
20.Vladimir I. Anisimov, Jan Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).

Data & Media loading...


Article metrics loading...



Wide band gap semiconductor materials are extending significant applications in electronics and optoelectronics industry. They are showing continued advancement in ultraviolet to infrared LEDs and laser diodes. Likewise the band gap tunability of ZnS with intentional impurities such as Mg and Mn are found useful for optoelectronic devices. Information from literature indicates slight blue shift in the band gapenergy of ZnS by Mgdoping but nevertheless, we report a reasonable red shift (3.48 eV/356 nm to 2.58 eV/480 nm) in ZnSband gapenergy in Mg-ZnS structure. Theoretical model based on first principle theory using local density approximation revealed consistent results on Mg-ZnS structure. Similarly, structural, morphological, optical and electrical properties of the as grown Mg-ZnS were studied by XRD,SEM,FTIR, EDS, UV-Vis Spectrophotometer and Hall measurement techniques.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd