Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942513
1.
1.X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, and J. A. Jackson, Science 344, 1373 (2014).
http://dx.doi.org/10.1126/science.1252291
2.
2.Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, and P. Sheng, Science 289, 1734 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
3.
3.G. Wang, D. Yu, J. Wen, Y. Liu, and X. Wen, Physics Letters A 327, 512 (2004).
http://dx.doi.org/10.1016/j.physleta.2004.05.047
4.
4.G. Wang, X. Wen, J. Wen, L. Shao, and Y. Liu, Physical Review Letters 93 (2004).
5.
5.Z. Liu, C. T. Chan, and P. Sheng, Physical Review B 65 (2002).
6.
6.C. Goffaux, J. Sánchez-Dehesa, A. L. Yeyati, P. Lambin, A. Khelif, J. O. Vasseur, and B. Djafari-Rouhani, Physical Review Letters 88 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.225502
7.
7.M. Hirsekorn, Applied Physics Letters 84, 3364 (2004).
http://dx.doi.org/10.1063/1.1723688
8.
8.M. Oudich, M. Senesi, M. B. Assouar, M. Ruzenne, J.-H. Sun, B. Vincent, Z. Hou, and T.-T. Wu, Physical Review B 84 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165136
9.
9.L. Jing, J. H. Wu, D. Guan, and N. Gao, Journal of Applied Physics 116, 103514 (2014).
http://dx.doi.org/10.1063/1.4895490
10.
10.Y. Jing, J. Xu, and N. X. Fang, Physics Letters A 376, 2834 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.08.057
11.
11.D. Guan, J. H. Wu, L. Jing, N. Gao, and M. Hou, Noise Control Engineering Journal 63, 20 (2015).
http://dx.doi.org/10.3397/1/376303
12.
12.Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, Physical Review Letters 101 (2008).
13.
13.C. J. Naify, C.-M. Chang, G. McKnight, and S. Nutt, Journal of Applied Physics 108, 114905 (2010).
http://dx.doi.org/10.1063/1.3514082
14.
14.C. J. Naify, C.-M. Chang, G. McKnight, F. Scheulen, and S. Nutt, Journal of Applied Physics 109, 104902 (2011).
http://dx.doi.org/10.1063/1.3583656
15.
15.Y. Zhang, J. Wen, Y. Xiao, X. Wen, and J. Wang, Physics Letters A 376, 1489 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.03.010
16.
16.Y. Chen, G. Huang, X. Zhou, G. Hu, and C.-T. Sun, The Journal of the Acoustical Society of America 136, 969 (2014).
http://dx.doi.org/10.1121/1.4892870
17.
17.S. Xiao, G. Ma, Y. Li, Z. Yang, and P. Sheng, Applied Physics Letters 106, 091904 (2015).
http://dx.doi.org/10.1063/1.4913999
18.
18.M. G. Blevins, S.-K. Lau, and L. M. Wang, The Journal of the Acoustical Society of America 137, 2298 (2015).
http://dx.doi.org/10.1121/1.4920389
19.
19.S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Physics Letters A 373, 4464 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.10.013
20.
20.S. Yao, X. Zhou, and G. Hu, New Journal of Physics 12, 103025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/103025
21.
21.S. Varanasi, J. S. Bolton, T. H. Siegmund, and R. J. Cipra, Applied Acoustics 74, 485 (2013).
http://dx.doi.org/10.1016/j.apacoust.2012.09.008
22.
22.N. Sui, X. Yan, T.-Y. Huang, J. Xu, F.-G. Yuan, and Y. Jing, Applied Physics Letters 106, 171905 (2015).
http://dx.doi.org/10.1063/1.4919235
23.
23.M. Yamashita and M. Gotoh, International Journal of Impact Engineering 32, 618 (2005).
http://dx.doi.org/10.1016/j.ijimpeng.2004.09.001
24.
24.J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng, Nature Communications 3, 756 (2012).
http://dx.doi.org/10.1038/ncomms1758
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942513
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942513
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942513
2016-02-18
2016-12-04

Abstract

A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial’s structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method(FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cellfilm shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942513.html;jsessionid=59rJuzI1xomg8eKl8KSrXxUP.x-aip-live-02?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942513&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942513&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942513'
Right1,Right2,Right3,