Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942670
1.
1.K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. a. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
3.
3.A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
4.
4.A. K. Geim, Science 324, 1530 (2009).
http://dx.doi.org/10.1126/science.1158877
5.
5.R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, Nat. Mater. 14, 271 (2015).
http://dx.doi.org/10.1038/nmat4170
6.
6.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
7.
7.Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
8.
8.J. Nakabayashi, D. Yamamoto, and S. Kurihara, Phys. Rev. Lett. 102, 066803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.066803
9.
9.M. Zeng, L. Shen, Y. Cai, Z. Sha, and Y. Feng, Appl. Phys. Lett. 96, 042104 (2010).
http://dx.doi.org/10.1063/1.3299264
10.
10.N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. Van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
11.
11.S. Cho, Y.-F. Chen, and M. S. Fuhrer, Appl. Phys. Lett. 91, 123105 (2007).
http://dx.doi.org/10.1063/1.2784934
12.
12.W. Y. Kim and K. S. Kim, Nat. Nanotechnol. 3, 408 (2008).
http://dx.doi.org/10.1038/nnano.2008.163
13.
13.J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 655 (2010).
http://dx.doi.org/10.1038/nnano.2010.154
14.
14.M. Zeng, Y. Feng, and G. Liang, Nano Lett. 11, 1369 (2011).
http://dx.doi.org/10.1021/nl2000049
15.
15.Y. Ni, K. Yao, H. Fu, G. Gao, S. Zhu, and S. Wang, Sci. Rep. 3, 1380 (2013).
16.
16.S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.036803
17.
17.W. Cai, Y. Zhu, X. Li, R. D. Piner, and R. S. Ruoff, Appl. Phys. Lett. 95, 123115 (2009).
http://dx.doi.org/10.1063/1.3220807
18.
18.T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006).
http://dx.doi.org/10.1126/science.1130681
19.
19.Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
20.
20.E. V. Castro, K. Novoselov, S. Morozov, N. Peres, J. L. Dos Santos, J. Nilsson, F. Guinea, A. Geim, and A. C. Neto, Phys. Rev. Lett. 99, 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
21.
21.J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. Vandersypen, Nat. Mater. 7, 151 (2008).
http://dx.doi.org/10.1038/nmat2082
22.
22.G. Wang, M. Zhang, S. Liu, X. Xie, G. Ding, Y. Wang, P. K. Chu, H. Gao, W. Ren, and Q. Yuan, Adv. Func. Mater. 25, 3666 (2015).
http://dx.doi.org/10.1002/adfm.201500981
23.
23.Y. Wang, H. Wang, J.-H. Gao, and F.-C. Zhang, Phys. Rev. B 87, 195413 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195413
24.
24.Y. Xu, X. Li, and J. Dong, Nanotechnology 21, 065711 (2010).
http://dx.doi.org/10.1088/0957-4484/21/6/065711
25.
25.A. Rakhmanov, A. Rozhkov, A. Sboychakov, and F. Nori, Phys. Rev. Lett. 109, 206801 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.206801
26.
26.G. Lee and K. Cho, Phys. Rev. B 79, 165440 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165440
27.
27.Y. Lu, R. Wu, L. Shen, M. Yang, Z. Sha, Y. Cai, P. He, and Y. Feng, Appl. Phys. Lett. 94, 122111 (2009).
http://dx.doi.org/10.1063/1.3103551
28.
28.J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
29.
29.M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
30.
30.J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys-Condens. Mat. 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
31.
31.O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125408
32.
32.T. P. Broekaert, B. Brar, J. P. A. Van der Wagt, A. C. Seabaugh, F. J. Morris, T. S. Moise, E. Beam, and G. Frazier, IEEE J. Solid-St. Circ. 33, 1342 (1998).
http://dx.doi.org/10.1109/4.711333
33.
33.R. H. Mathews, J. P. Sage, T. Sollner, S. D. Calawa, C.-L. Chen, L. J. Mahoney, P. A. Maki, and K. M. Molvar, P. IEEE 87, 596 (1999).
http://dx.doi.org/10.1109/5.752517
34.
34.A. McWhorter and A. Foyt, Appl. Phys. Lett. 9, 300 (1966).
http://dx.doi.org/10.1063/1.1754759
35.
35.E. Brown, J. Söderström, C. Parker, L. Mahoney, K. Molvar, and T. McGill, Appl. Phys. Lett. 58, 2291 (1991).
http://dx.doi.org/10.1063/1.104902
36.
36.L. Esaki, Phys. Rev. 109, 603 (1958).
http://dx.doi.org/10.1103/PhysRev.109.603
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942670
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942670
2016-02-22
2016-12-06

Abstract

By performing first-principle quantum transport calculation, the spin-dependent transportproperties of zigzag-edged bilayer graphenenanoribbon based devices are investigated. There are four kinds of structures with different stacking sequences and treatment of dangling bonds considered in our work. It is shown that the devices are perfect spin-filters with extremely large spin polarization as well as substantial negative differential resistance effects, which are affected by the stacking sequences and edge structures. All these phenomena can be explained by the spin-resolved local density of states and the tranmission spectra.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942670.html;jsessionid=swBC4_97QkiusldvM1JFqZn2.x-aip-live-06?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942670&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942670'
Right1,Right2,Right3,