Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Naruhisa Miura, Hideaki Ishii, Akira Yamada, Makoto Konagai, Yasuyuki Yamauchi, and Akio Yamamoto, Jpn. J. Appl. Phys. 36, L256 (1997).
2.T. Inushima, V.V. Mamutin, V.A. Vekshin, S.V. Ivanov, T. Sakon, S. Motokawa, and S. Ohoya, J. Cryst. Growth 227–228, 481 (2001);
2.T. Inushima, Sci. Technol. Adv. Mater. 7, S112 (2006).
3.P.H. Chang, C.T. Liang, N.C. Chen, T.Y. Huang, and Y.F. Chen, Diam. Relat. Mater. 15(4-8), 1179 (2006).
4.D. C. Ling, J. H. Cheng, Y. Y. Lo, C. H. Du, A. P. Chiu, C. A. Chang, and P. H. Chang, Phys. Stat. Sol. (b) 244(12), 4594 (2007).
5.C.-T. Liang, Z.H. Sun, C.L. Hsiao, M. Z. Hsu, L.W. Tu, J.Y. Lin, J.H. Chen, Y. F. Chen, and C. T. Wu, Appl. Phys. Lett. 90, 172101 (2007).
6.T. Inushima, Phys. Stat. Sol. C 4, 660 (2007).
7.E. Tiras, M. Gunes, N. Balkan, R. Airey, and W. J. Schaff, Appl. Phys. Lett. 94, 142108 (2009).
8.T. Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa, Phys. Rev. B 72, 085210 (2005).
9.M. Gunes, N. Balkan, E. Tiras, S. Ardali, A. O. Ajagunna, E. Iliopoulos, and A. Georgakilas, Phys. Stat. Sol. C 8(5), 1637 (2011).
10.A. Kadir, S. Mukhopadhyay, T. Ganguli, C. Galanda, M. R. Gokhale, B. M. Arora, P. Raychaudhuri, and A. Bhattacharya, Solid State Commun. 146, 361 (2008).
11.T. Inushima, D. K. Maude, D. Muto, and Y. Nanishi, Phys. Stat. Sol. C 7(5), 1287 (2010).
12.S.K. Lin, K.T. Wu, C.P. Huang, C.-T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, N. C. Chen, C. A. Chang, H. C. Peng, C. F. Shih, K. S. Liu, and T. Y. Lin, J. Appl. Phys. 97, 046101 (2005).
13.L. F. J. Piper, T. D. Veal, C. F. McConville, Hai Lu, and W. J. Schaff, Appl. Phys. Lett. 88, 252109 (2006).
14.Anderson Janotti and Chris G. Van de Walle, APL 92, 032104 (2008).
15.V. Darakchieva, K. Lorenz, N. P. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. L. Hsiao, L. C. Chen, W. J. Schaff, L. W. Tu, T. Yamaguchi, and Y. Nanishi, APL 95, 022103 (2009).
16.V. Darakchieva, K. Lorenz, N. P. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. L. Hsiao, L. C. Chen, W. J. Schaff, L. W. Tu, T. Yamaguchi, and Y. Nanishi, APL 96, 081907 (2010).
17.I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
18.Q. Y. Xie, M. Q. Gu, L. Huang, F. M. Zhang, and X. S. Wu, AIP Advances 2, 012185 (2012).
19.J. Oila, A. Kemppinen, A. Laakso, K. Saarinen, W. Egger, L. Liszkay, P. Sperr, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 84(9), 1486 (2004).
20.R.-F. Liu and C. Cheng, Phys. Rev. B 76, 014405 (2007).
21.Y. Gohda and A. Oshiyama, Phys. Rev. B 78, 161201(R) (2008).
22.P. Dev, Y. Xue, and P. H. Zhang, Phys. Rev. Lett. 100, 117204 (2008).
23.F.C. Hsu, J. Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P. M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, and M.K. Wu, Proc. Natl. Acad. Sci. U.S.A. 105, 14262 (2008).
24.C. de la Cruz1, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P.C. Dai, Nature (London) 453, 899 (2008).
25.C. Krellner, N. Caroca-Canales, A. Jesche, H. Rosner, A. Ormeci, and C. Geibel, Phys. Rev. B. 78, 100504(R) (2008).
26.Shiliang Li, C. de la Cruz, Q. Huang, Y. Chen, J. W. Lynn, Jiangping Hu, Y.-L. Huang, F.-C. Hsu, K.-W. Yeh, M.-K. Wu, and P.C. Dai, Phys. Rev. B 79, 054503 (2009).
27.Q. Huang, Y. Qiu, Wei Bao, M. A. Green, J.W. Lynn, Y. C. Gasparovic, T. Wu, G. Wu, and X. H. Chen, Phys. Rev. Lett. 101, 257003 (2008).
28.M. J. Wang, J.Y. Luo, T.W. Huang, H. H. Chang, T. K. Chen, F. C. Hsu, C. T. Wu, P. M. Wu, A. M. Chang, and M. K. Wu, Phys. Rev. Lett. 103, 117002 (2009).
29.T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, Phys. Rev. Lett. 102, 177005 (2009).
30.C.A. Chang, T.Y. Tang, P. H. Chang, N.C. Chen, and C.T. Liang, Jpn. J. Appl. Phys. 46(5A), 2840 (2007).
31.S. Khromov, P. O. Å. Persson, X. Wang, A. Yoshikawa, B. Monemar, J. Rosen, E. Janzén, and V. Darakchieva, Appl.Phys.Lett. 106, 232102 (2015).
32.M.-Y. Xie, N. Ben Sedrine, S. Schöche, T. Hofmann, M. Schubert, L. Hung, B. Monemar, X. Wang, A. Yoshikawa, K. Wang, T. Araki, Y. Nanishi, and V. Darakchieva, J. Appl. Phys. 115, 163504 (2014).
33.S. S. Schöche, T. Hofmann, V. Darakchieva, N. B. Sedrine, X. Wang, A. Yoshikawa, and M. Schubert, J. Appl. Phys. 113, 013502 (2013).
34.M.-Y. Xie, M. Schubert, J. Lu, P. O. A°. Persson, V. Stanishev, C. L. Hsiao, L. C. Chen, W. J. Schaff, and V. Darakchieva, Phys. Rev. B. 90, 195306 (2014).
35.Heiko Timmers, K. Scott, A. Butcher, Santosh K. Shrestha, Patrick P.-T. Chen, Marie Wintrebert-Fouquet, and Rakesh Dogra, J. Cryst. Growth 288, 236 (2006).
36.A. Ney, R. Rajaram, S. S. Parkin, T. Kammermeier, and S. Dhar, Appl. Phys. Lett. 89, 112504 (2006).

Data & Media loading...


Article metrics loading...



We report on the Meissner effect of Mg-doped InN film with superconducting transition onset temperature T of 5 K. Mg-doped InN is magnetically ordered and exhibits a simultaneous first-order magnetic and electric transition near 50 K. Its behavior is similar to that of iron-based superconductors. A strong correlation is proposed to exist between structural distortion and superconductivity when Mg is doped into InN. The suppression of magnetic ordering close to T by doping is further demonstrated by anisotropic magnetoresistance and M-H measurements. The findings suggest that the superconducting mechanism in the system may not be conventional BCS.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd