Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942775
1.
1.G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat Photon 1(9), 531534 (2007).
http://dx.doi.org/10.1038/nphoton.2007.147
2.
2.M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and A. K. Pourrezaei, IEEE Eng. Med. Biol. Mag. 26, 3846 (2007).
http://dx.doi.org/10.1109/MEMB.2007.384094
3.
3.R.-P. Chang and D.-C. Perng, Applied Physics Letters 99(8), 081103 (2011).
http://dx.doi.org/10.1063/1.3627185
4.
4.G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442(7099), 180183 (2006).
http://dx.doi.org/10.1038/nature04855
5.
5.X. Xie, S.-Y. Kwok, Z. Lu, Y. Liu, Y. Cao, L. Luo, J. A. Zapien, I. Bello, C.-S. Lee, S.-T. Lee, and W. Zhang, Nanoscale 4, 2914 (2012).
http://dx.doi.org/10.1039/c2nr30277b
6.
6.M. D. Rouhani, A. Sylla, K. Kouadja, and D. Estève, Physica Status Solidi (a) 150(2), 773782 (1995).
http://dx.doi.org/10.1002/pssa.2211500221
7.
7.T. Hayashi, T. Minemoto, G. Zoppi, I. Forbes, K. Tanaka, S. Yamada, T. Araki, and H. Takakura, Solar Energy Materials and Solar Cells 93(6–7), 922925 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.007
8.
8.D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P.J. Dale, Thin Solid Films 520, 62916294 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.05.085
9.
9.P.A. Fernandes, P.M.P. Salomé, and A.F. da Cunha, Journal of Physics D: Applied Physics 43, 215403 (2010).
http://dx.doi.org/10.1088/0022-3727/43/21/215403
10.
10.T. Kuku and O. Fakolujo, Solar Energy Materials 16, 199204 (1987).
http://dx.doi.org/10.1016/0165-1633(87)90019-0
11.
11.D. Tiwari, T.K. Chaudhuri, T. Shripathi, U. Deshpande, and R. Rawat, Solar Energy Materials and Solar Cells 113, 165170 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.02.017
12.
12.D. Avellaneda, M. T. S. Nair, and P. K. Nair, Journal of the Electrochemical Society 157(6), D346D352 (2010).
http://dx.doi.org/10.1149/1.3384660
13.
13.M. Adelifard, M. M. B. Mohagheghi, and H. Eshghi, Physica Scripta 85, 035603 (2012).
http://dx.doi.org/10.1088/0031-8949/85/03/035603
14.
14.T. Nomura, T. Maeda, and T. Wada, Japanese Journal of Applied Physics 53, 05FW01 (2014).
http://dx.doi.org/10.7567/JJAP.53.05FW01
15.
15.M. Nakashima, T. Yamaguchi, H. Itani, J. Sasano, and M. Izaki, Physica Status Solidi (c) 12(6), 761764 (2015).
http://dx.doi.org/10.1002/pssc.201400269
16.
16.U. Holzwarth and N. Gibson, Nat Nano 6, 534534 (2011).
http://dx.doi.org/10.1038/nnano.2011.145
17.
17.S. Karim, M. E. Toimil-Molares, F. Maurer, M. W. Ensinger, J. Liu, T.W. Cornelius, and R. Neumann, Appl. Phys. A 84, 403407 (2006).
http://dx.doi.org/10.1007/s00339-006-3645-6
18.
18.S. Dias, B. Murali, and S.B. Krupanidhi, Materials Chemistry and Physics 167, 309314 (2015).
http://dx.doi.org/10.1016/j.matchemphys.2015.10.049
19.
19.H. Guan, H. Shen, C. Gao, and X. He, J Mater Sci: Mater Electron 24(5), 14901494 (2013).
http://dx.doi.org/10.1007/s10854-012-0960-x
20.
20.M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, and A. Kirov, “Crystallography online: Bilbao Crystallographic Server,” Bulg. Chem. Commun. 43(2), 183197 (2011).
21.
21.J. Llanos, A. Buljan, C. Mujica, and R. Ramirez, J. Alloys Compd. 234, 40 (1996).
http://dx.doi.org/10.1016/0925-8388(95)02062-4
22.
22.L.D. Partain, R.A. Schnerder, L.F. Donaghey, and P.S. Meleod, J. Appl. Phys. 57, 5056 (1985).
http://dx.doi.org/10.1063/1.335283
23.
23.A.R.H.F. Ettema and C. Hass, J. Phys. Condens. Matter 5, 3817 (1993).
http://dx.doi.org/10.1088/0953-8984/5/23/008
24.
24.I. Nakai, Y. Sugitani, K. Nagashima, and Y. Niwa, J. Inorg. Nucl. Chem. 40, 789 (1978).
http://dx.doi.org/10.1016/0022-1902(78)80152-3
25.
25.M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, Journal of Electron Spectroscopy and Related Phenomena 88-91, 643648 (1998).
http://dx.doi.org/10.1016/S0368-2048(97)00236-3
26.
26.Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, and Z. L. Wang, ACS Nano 4(10), 62856291 (2010).
http://dx.doi.org/10.1021/nn1022878
27.
27.B. Murali, S. Dias, and S. B. Krupanidhi, AIP Advances 3, 082132 (2013).
http://dx.doi.org/10.1063/1.4820377
28.
28.L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, and G. Li, Nat Commun 5 (2014).
http://dx.doi.org/10.1038/ncomms6404
29.
29.B. Murali and S. B. Krupanidhi, Journal of Nanoscience and Nanotechnology 4, 27422752 (2015).
http://dx.doi.org/10.1166/jnn.2015.8725
30.
30.J.G. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
31.
31.S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 292.
32.
32.R. Maity, S. Kundoo, and K.K. Chattopadhyay, Solar Energy Materials & Solar Cells 86, 217 (2005).
http://dx.doi.org/10.1016/j.solmat.2004.07.008
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942775
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942775
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942775
2016-02-22
2016-09-26

Abstract

The CuSnSthin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm−1 corroborate its application as a photoactive material. The visible and infrared (IR) photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 μA to a current of 1.78 μA at 1.05 suns and 8.7 μA under 477.7 mW/cm2 IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 × 1010 Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 × 1010 Jones respectively at 477.7 mW/cm2 IR illumination. The transient photoresponse was measured both for visible and IR illuminations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942775.html;jsessionid=_5J07mpBm2sfD3DUGYQHOY3C.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942775&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942775&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942775'
Right1,Right2,Right3,