Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942818
1.
1.T. H. Etsell and S. N. Flengas, Chem. Rev. 70, 339 (1970).
http://dx.doi.org/10.1021/cr60265a003
2.
2.P. Yashar, J. Rechner, M. S. Wong, W. D. Sproul, and S. A. Barnett, Surf. Coat. Technol. 94-95, 333 (1997).
http://dx.doi.org/10.1016/S0257-8972(97)00270-3
3.
3.Brian C. H. Steele and A. Heinzel, Nature 414, 345 (2001).
http://dx.doi.org/10.1038/35104620
4.
4.N. Miura, T. Sato, S. A. Anggraini, H. Ikeda, and S. Zhuiykov, Ionics 20, 901 (2014).
http://dx.doi.org/10.1007/s11581-014-1140-1
5.
5.Ceramics Science and Technology, edited by R. Riedel and I.-W. Chen (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013)
http://dx.doi.org/10.1002/9783527631940
6.
6.P. Amézaga-Madrid, A. Hurtado-Macías, W. Antúnez-Flores, F. Estrada-Ortiz, P. Pizá-Ruiz, and M. Miki-Yoshida, J. Alloys Compd. 536, S412 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.11.111
7.
7.Y. Shen, S. Shao, H. Yu, Z. Fan, H. He, and J. Shao, Appl. Surf. Sci. 254, 552 (2007).
http://dx.doi.org/10.1016/j.apsusc.2007.06.029
8.
8.D. K. Smith and W. Newkirk, Acta Crystallogr. 18, 983 (1965).
http://dx.doi.org/10.1107/S0365110X65002402
9.
9.B. Bondars, G. Heidemane, J. Grabis, K. Laschke, H. Boysen, J. Schneider, and F. Frey, J. Mater. Sci. 30, 1621 (1995).
http://dx.doi.org/10.1007/BF00375275
10.
10.D.-N. Wang, Y.-Q. Guo, K.-M. Liang, and K. Tao, Science in China 42, 80 (1999).
11.
11.H. G. Scott, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 33, 281 (1977).
http://dx.doi.org/10.1107/S0567740877003367
12.
12.J. M. Pruneda and E. Artacho, Phys. Rev. B 72 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085107
13.
13.M. G. Paton and E. N. Maslen, Acta Crystallogr. 19, 307 (1965).
http://dx.doi.org/10.1107/S0365110X65003365
14.
14.A. Torres-Huerta, M. Domnguez-Crespo, E. Ramrez-Meneses, and J. Vargas-Garca, Appl. Surf. Sci. 255, 4792 (2009).
http://dx.doi.org/10.1016/j.apsusc.2008.11.059
15.
15.J. Lian, J. Zhang, F. Namavar, Y. Zhang, F. Lu, H. Haider, K. Garvin, W. J. Weber, and R. C. Ewing, Nanotechnology 20, 245303 (2009).
http://dx.doi.org/10.1088/0957-4484/20/24/245303
16.
16.M. Tsuchiya, A. M. Minor, and S. Ramanathan, Philos. Mag. 87, 5673 (2007).
http://dx.doi.org/10.1080/14786430701708349
17.
17.M. Tsuchiya, S. K. Sankaranarayanan, and S. Ramanathan, Prog. Mater. Sci. 54, 981 (2009).
http://dx.doi.org/10.1016/j.pmatsci.2009.04.003
18.
18.W. Jung, J. L. Hertz, and H. L. Tuller, Acta Mater. 57, 1399 (2009).
http://dx.doi.org/10.1016/j.actamat.2008.11.028
19.
19.J. Chevalier, L. Gremillard, A. V. Virkar, and D. R. Clarke, J. Am. Ceram. Soc. 92, 1901 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03278.x
20.
20.P. Duwez, F. H. J. Brown, and F. Odell, J. Electrochem. Soc. 98, 356 (1951).
http://dx.doi.org/10.1149/1.2778219
21.
21.F.-K. Fan, A. K. Kuznetsov, and É. K. Keler, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 12, 542 (1963).
http://dx.doi.org/10.1007/BF00843937
22.
22.R. Ruh, K. S. Mazdiyasni, and H. O. Bielstein, Am. Ceram. Soc. Bull. 47, 366 (1968).
23.
23.A. Rouanet, C. R. Seances Acad. Sci., Ser. C 267, 1581 (1968).
24.
24.S. R. Skaggs, U.S.A.E.C., Report No. SC-RR-720031, 1 (1972).
25.
25.K. K. Srivastava, R. N. Patil, C. B. Choudhary, K. V. G. K. Gokhale, and E. C. Subbarao, Trans. J. Br. Ceram. Soc. 73, 85 (1974).
26.
26.A. Rouanet, Rev. Int. Hautes Temp. Refract. 8, 161 (1971).
27.
27.H. G. Scott, J. Mater. Sci. 10, 1527 (1975).
http://dx.doi.org/10.1007/BF01031853
28.
28.H. G. Scott, J. Aust. Ceram. Soc. 17, 16 (1981).
29.
29.V. P. Gorelov, Tr. Inst. Elektrochim., Ural. Nauchn. Tsentr, Akad. Nauk SSSR 26, 69 (1978).
30.
30.V. S. Stubican, R. C. Hink, and S. P. Ray, J. Am. Ceram. Soc. 61, 17 (1978).
http://dx.doi.org/10.1111/j.1151-2916.1978.tb09220.x
31.
31.V. S. Stubican and J. R. Hellmann, Adv. Ceram. 3, 25 (1981).
32.
32.V. S. Stubican, J. R. Hellmann, and S. P. Ray, Mater. Sci. Monogr. 10, 257 (1982).
33.
33.C. Pascual and P. Duran, J. Am. Ceram. Soc. 66, 23 (1983).
http://dx.doi.org/10.1111/j.1151-2916.1983.tb09961.x
34.
34.R. Ruh, K. S. Mazdiyasni, P. G. Valentine, and H. O. Bielstein, J. Am. Ceram. Soc. 67, C (1984).
http://dx.doi.org/10.1111/j.1151-2916.1984.tb19618.x
35.
35.N. Yoshikawa and H. Suto, Nippon Kinzoku Gakkaishi 50, 1101 (1986).
36.
36.H. Suto, T. Sakuma, and N. Yoshikawa, Trans. Jpn. Inst. Met. 28, 623 (1987).
http://dx.doi.org/10.2320/matertrans1960.28.623
37.
37.V. S. Stubican, Adv. Ceram. 24A, 71 (1988).
38.
38.S. A. Degtyarev and G. F. Voronin, Russ. J. Phys. Chem. (Engl. Transl.) 61, 320 (1987).
39.
39.S. A. Degtyarev and G. F. Voronin, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 12, 73 (1988).
http://dx.doi.org/10.1016/0364-5916(88)90031-4
40.
40.S. A. Degtyarev and G. F. Voronin, Russ. J. Inorg. Chem. (Engl. Transl.) 62, 1320 (1988).
41.
41.Y. Du, Z. P. Jin, and P. Y. Huang, Chin. J. Met. Sci. Technol. 6, 13 (1990).
42.
42.Y. Du, Z. P. Jin, and P. Y. Huang, J. Am. Ceram. Soc. 74, 1569 (1991).
http://dx.doi.org/10.1111/j.1151-2916.1991.tb07142.x
43.
43.Z. P. Jin and Y. Du, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 16, 355 (1992).
http://dx.doi.org/10.1016/0364-5916(92)90011-L
44.
44.Y. Suzuki, Solid State Ionics 81, 211 (1995).
http://dx.doi.org/10.1016/0167-2738(95)00186-A
45.
45.M. Yashima, M. Kakihana, and M. Yoshimura, Solid State Ionics 86-88, 1131 (1996).
http://dx.doi.org/10.1016/0167-2738(96)00386-4
46.
46.Y. Suzuki, Solid State Ionics 95, 227 (1997).
http://dx.doi.org/10.1016/S0167-2738(96)00606-6
47.
47.O. Fabrichnaya, C. Wang, M. Zinkevich, C. G. Levi, and F. Aldinger, J. Phase Equilib. Diffus. 26, 591 (2005).
http://dx.doi.org/10.1361/154770305X74395
48.
48.T. Götsch, L. Mayr, M. Stöger-Pollach, B. Klötzer, and S. Penner, Appl. Surf. Sci. 331, 427 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.01.068
49.
49.L. Mayr, N. Köpfle, A. Auer, B. Klötzer, and S. Penner, Rev. Sci. Instrum. 84, 094103 (2013).
http://dx.doi.org/10.1063/1.4821148
50.
50.M. Kogler, E.-M. Köck, S. Vanicek, D. Schmidmair, T. Götsch, M. Stöger-Pollach, C. Hejny, B. Klötzer, and S. Penner, Inorg. Chem. 53, 13247 (2014).
http://dx.doi.org/10.1021/ic502623t
51.
51.D. G. Lamas and N. E. Walsöe de Reca, J. Mater. Sci. 35, 5563 (2000).
http://dx.doi.org/10.1023/A:1004896727413
52.
52.J. S. Lamas, W. P. Leroy, and D. Depla, Thin Solid Films 525, 6 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.10.061
53.
53.C. Gammer, C. Mangler, C. Rentenberger, and H. P. Karnthaler, Scr. Mater. 63, 312 (2010).
http://dx.doi.org/10.1016/j.scriptamat.2010.04.019
54.
54.S. P. Ray and V. S. Stubican, Mater. Res. Bull. 12, 549 (1977).
http://dx.doi.org/10.1016/0025-5408(77)90122-2
55.
55.J. Holgado, R. Escobar Galindo, A. van Veen, H. Schut, J. d. Hosson, and A. González-Elipe, Nucl. Instrum. Methods Phys. Res., Sect. B 194, 333 (2002).
http://dx.doi.org/10.1016/S0168-583X(02)00695-X
56.
56.J. W. Drazin, Ricardo H. R. Castro, and D. J. Green, J. Am. Ceram. Soc. 98, 1377 (2015).
http://dx.doi.org/10.1111/jace.13504
57.
57.R. G. Green, L. Barré, and J. B. Giorgi, Surf. Sci. 601, 792 (2007).
http://dx.doi.org/10.1016/j.susc.2006.11.007
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942818
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942818
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942818
2016-02-22
2016-09-29

Abstract

Yttria-stabilized zirconia (YSZ) thin films with varying composition between 3 mol% and 40 mol% have been prepared by direct-current ion beam sputtering at a substrate temperature of 300 °C, with ideal transfer of the stoichiometry from the target to the thin film and a high degree of homogeneity, as determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy. The films were analyzed using transmission electron microscopy, revealing that, while the films with 8 mol% and 20 mol% yttria retain their crystal structure from the bulk compound (tetragonal and cubic, respectively), those with 3 mol% and 40 mol% YO undergo a phase transition upon sputtering (from a tetragonal/monoclinic mixture to purely tetragonal YSZ, and from a rhombohedral structure to a cubic one, respectively). Selected area electron diffraction shows a strong texturing for the three samples with lower yttria-content, while the one with 40 mol% YO is fully disordered, owing to the phase transition. Additionally, AFM topology images show somewhat similar structures up to 20 mol% yttria, while the specimen with the highest amount of dopant features a lower roughness. In order to facilitate the discussion of the phases present for each sample, a thorough review of previously published phase diagrams is presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942818.html;jsessionid=e17vWHr8dtu3X51dSeoTBu3B.x-aip-live-02?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942818&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942818&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942818'
Right1,Right2,Right3,