Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942919
1.
1.L. Q. Cong, W. Cao, Z. Tian et al., “Manipulating polarization states of terahertz radiation using metamaterials,” New J. of Phys. 14, 115013(1-11) (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/115013
2.
2.W. R. Zhu, Ivan D. Rukhlenko, F. J. Xiao, and M. Premaratne, “Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking,” J. App. Phys. 115, 143101(1-4) (2014).
3.
3.S. A. Mousavi, E. Plum, J. H. Shi, and N. I. Zheludev, “Coherent control of birefringence and optical activity,” App. Phys. Lett. 105, 011906(1-4) (2014).
http://dx.doi.org/10.1063/1.4890009
4.
4.S. Zhang, J. F. Zhou, Y. S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H. T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handeness switching in terahertz chiral metamolecules,” Nat. Comm. 3, 942 (2012).
http://dx.doi.org/10.1038/ncomms1908
5.
5.R. Schreiber, N. Luong, Z. Y. Fan, A. Kuzyk, P.C. Nickels, T. Zhang, D. M. Smith, B. Yurke, W. Kuang, A.O. Govorov, and T. Liedl, “Chiral plasmonic DNA nanostructures with switchable circular dichroism,” Nat.Comm. 4, 2948(1-6) (2013).
http://dx.doi.org/10.1038/ncomms3948
6.
6.J. B. Pendry, “A chiral route to negative refraction,” Science 306, 13531355 (2004).
http://dx.doi.org/10.1126/science.1104467
7.
7.E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407(1-6) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035407
8.
8.S. Zhang, Y. S. Park, J. Li, X.C. Lu, W.L. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901-023904 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023901
9.
9.A. V. Rogacheva, V.A. Fedotov, A.S. Schwanecke, and N.I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys.Rev.Lett. 97, 1774011774014 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.177401
10.
10.E. Plum, V. A. Fedotov, A. S. Schwanecke, N.I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90, 223113-223115 (2007).
http://dx.doi.org/10.1063/1.2745203
11.
11.M. X. Ren, E. Plum, J. J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833(1-6) (2012).
http://dx.doi.org/10.1038/ncomms1805
12.
12.Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized, ultrathin broadband circular polarizers,” Nat. Commun. 3, 870-873 (2012).
http://dx.doi.org/10.1038/ncomms1877
13.
13.L. Wu, Z. Y. Yang, Y. Z. Cheng, Z.Q. Liu, P. Zhang, M. Zhao, R.Z. Gong, X.H. Yuan, Y. Zheng, and J. Duan, “Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials,” Opt. Exp. 21(5), 5239-5246 (2013).
http://dx.doi.org/10.1364/OE.21.005239
14.
14.A. M. Kuzmenko, A. Shuvaev, V. Dziom, A. Pimenov, M. Schiebl, A. A. Mukhin, V. Yu. Ivanov, L. N. Bezmaternykh, and A. Pimenov, “Giant gigahertz optical activity in multiferroic ferroborate,” Phys. Rev. B 89, 174407(1-9) (2014).
15.
15.T. T. Kim, S. S. Oh, H. S. Park, R. Zhao, S. H. Kim, W. J. Choi, B. Min, and O. Hess, “Optical activity enhanced by strong inter-molecular coupling in planar chiral metamaterials,” Scientific Reports 4, 5864(1-6) (2014).
16.
16.H. S. Park, T. T. Kim, H. D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Comm. 5, 5435 (2014).
http://dx.doi.org/10.1038/ncomms6435
17.
17.C.W. Bumm, Chemical Crystallography (Oxford University Press, New York, 1945), p. 88.
18.
18.R. Williams, “Optical rotatory effect in the Nematic liquid phase of p-Azoxyanisole,” Phys. Rev. Lett. 21, 342-344 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.342
19.
19.E. Plum, V. A. Fedotov, and N. I. Zheludev, “Optical activity in extrinsically chiral metamaterials,” Appl. Phys. Lett. 93, 191911(1-3) (2008).
http://dx.doi.org/10.1063/1.3021082
20.
20.E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 102, 113902(1-4) (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.113902
21.
21.E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11, 074009(1-7) (2009).
http://dx.doi.org/10.1088/1464-4258/11/7/074009
22.
22.R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104(1-4) (2009).
23.
23.R. Singh, E. Plum, W. l. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Exp. 18(13), 13425(1-6) (2010).
24.
24.Bruno Gompf, Julia Braun, Thomas Weiss, Harald Giessen, Martin Dressel, and Uwe Hubner, “Periodic Nanostructures: Spatial Dispersion Mimics Chirality,” Phys.Rev.Lett. 106, 185501(1-4) (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.185501
25.
25.A Shaltout, J Liu, VM Shalaev, and AV Kildishev, “optical activity metasurface with non-chiral plasmonic nanoantennas,” Nano Lett. 14(8), 4426-4431 (2014).
http://dx.doi.org/10.1021/nl501396d
26.
26.Efi Efrati and William T. M. Irvine, “Orientation-dependent handedness and chiral design,” Phys. Rev. X 4, 011003(1-12) (2014).
27.
27.P. Zhang, M. Zhao, L. Wu, Z. Lu, Z. Xie, Yu Zheng, J. Duan, and Z. Yang, “Giant circular polarization conversion in layer-by-layer nonchiral metamaterial,” J.Opt.Soc.Am.A 30(9), 1714-1718 (2013).
http://dx.doi.org/10.1364/JOSAA.30.001714
28.
28.L. Q. Cong, N. N. Xu, J. G. Han, W. L. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with pancharatnam-berry-phase-enabled modulation and polarization control,” Advanced Materials 27, 6630-6636 (2015).
http://dx.doi.org/10.1002/adma.201502716
29.
29.L. Q. Cong, N. N. Xu, W. L. Zhang, and R. Singh, “polarization control in terahertz metasurfaces with the lowest order rotational symmetry,” Advanced Optical Materials 3(9), 1176-1183 (2015).
http://dx.doi.org/10.1002/adom.201500100
30.
30.B. B. K, R. V. C, J Cooper, and P. L. Knight, Phys. Rev. A 45, 3347 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.3347
31.
31.Shifang Guo, S. Q. Duan, X. Yan, W. D. Chu, and W. Zhang, “Tailoring the photon emission patterns in nanostructures,” New J. Phys. 13, 053005(1-11) (2011).
32.
32.Shifang Guo, S. Q. Duan, N. Yang, W. D. Chu, and W. Zhang, “Generation of even harmonics in coupled quantum dots,” Phys. Rev. A 84, 015803(1-4) (2011).
33.
33.W. Zhang, Shifang Guo, S. Q. Duan, and X. G. Zhao, “Terahertz wave generation from hyper-Raman lines in two-level quantum systems driven by two-color lasers,” Optics Express 21(18), 21349-21356 (2013).
http://dx.doi.org/10.1364/OE.21.021349
34.
34.Ofir E. Alon, Vitali Averbukh, and Nimrod Moiseyev, “High harmonic generation of soft X-ray by carbon nanotubes,” Phys. Rev. Lett. 85(24), 5218 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.5218
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942919
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942919
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942919
2016-02-23
2016-09-27

Abstract

We develop a theory of original quantum mechanism for finding strong optical activity quantum optical system in three-level non-chiral nanostructures, where symmetrical incidence (the propagation of the incident light is vertical to the plane of nanostructures) is considered. The theory is validated via both analytical and numerical analysis of specifically designed non-chiral coupled quantum dots models. In particular, by proper designing of the incidence, tunable terahertz wave polarized even in the opposite direction of the incidence is obtained. The effect could be explored for developing novel highly efficient terahertz polarization rotator and modulators, and may lead to the appearance of a new class of negative index terahertz nanostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942919.html;jsessionid=Hthtf8e-ThyUFbxAUGvXjkVk.x-aip-live-06?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942919&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942919&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942919'
Right1,Right2,Right3,