Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. L. Barnes, A. Dereux, and T. W Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
2.C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
3.P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. photon. 3, 283 (2009).
4.D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. photon. 4, 83 (2010).
5.I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-insulator-metal nanoscale loop-stub structures,” IEEE Photon. J 4, 2136 (2012).
6.H. Lu, X. M. Liu, D. Mao, L.R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922 (2010).
7.H. Lu, X. M. Liu, Y.K. Gong, L. R. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613 (2011).
8.W. Cai, J.S. White, and M.L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403 (2009).
9.C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357 (2005).
10.C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869 (2008).
11.G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2010).
12.M. Sluijter, D. K.G. de Boer, and H. P. Urbach, “Simulations of a liquid-crystal-based electro-optical switch,” Opt. Lett. 34, 94 (2008).
13.B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: A framework to reduce losses in plasmonic nanostructures,” ACS Nano. 7, 6978 (2013).
14.V. E. Bochenkov, M. Frederiksen, and D. S. Sutherland, “Enhanced refractive index sensitivity of elevated short range ordered nanohole arrays in optically thin plasmonic Au films,” Opt. Express 21, 14763 (2013).
15.T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22, 7669 (2014).
16.T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096 (2009).
17.J. Chen, Y. D. Li, Z. Q. Chen, J. Y. Peng, J. Qian, J. J. Xu, and Q. Sun, “Tunable resonances in the plasmonic split-ring resonator,” IEEE Photon. J. 6, 1 (2014).
18.Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface Plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104, 231114 (2014).
19.R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
20.Z. H. He, H. J. Li, S. P. Zhan, G. T. Cao, and B. X. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39, 5543 (2014).
21.A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A. 59, 4732 (1999).
22.A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavityoptoelectronic devices,” Appl. Opt. 37, 5271 (1998).
23.Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Exp. 19, 3251 (2011).
24.B. Tang, J. Wang, X. Xia, X. Liang, C. Song, and S. Qu, “Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators,” Appl. Phys. Exp. 8, 032202 (2015).
25.F. Lu, Z. Wang, K. Li, and A. Xu, “A plasmonic triple-wavelength demultiplexing structure based on MIM waveguide with side-coupled nanodisk cavities,” IEEE Trans. Nanotechnol. 12, 1185 (2013).
26.G. G. Zheng, W. Su, Y. Y. Chen, C.Y. Zhang, M. Lai, and Y. Z. Liu, “Band-stop filters based on a coupled circular ring metal–insulator–metal resonator containing nonlinear material,” J. Opt. 14, 055001 (2012).

Data & Media loading...


Article metrics loading...



The tunable multimode electromagnetically induced absorption (EIA)-like transmission was investigated in a two-ring system. In this system, by introducing asymmetry factor =  - , we provided several ways to modulate the EIA-like transmission spectra. An off-to-on EIA-like response could be realized by changing the radius or the refractive index of the rings. During the off-to-on process, we found the red shift and blue shift effects in the spectra are appeared and the widths of EIA-like dips are broadened. Numerical simulation by finite element method was conducted to verify our discussion. We believe all these would provide guidelines to design the useful EIA-like devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd