Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942937
1.
1.W. L. Barnes, A. Dereux, and T. W Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
2.
2.C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007).
http://dx.doi.org/10.1038/nature05350
3.
3.P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. photon. 3, 283 (2009).
http://dx.doi.org/10.1038/nphoton.2009.47
4.
4.D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. photon. 4, 83 (2010).
http://dx.doi.org/10.1038/nphoton.2009.282
5.
5.I. Zand, M. Bahramipanah, M. S. Abrishamian, and J. M. Liu, “Metal-insulator-metal nanoscale loop-stub structures,” IEEE Photon. J 4, 2136 (2012).
http://dx.doi.org/10.1109/JPHOT.2012.2226569
6.
6.H. Lu, X. M. Liu, D. Mao, L.R. Wang, and Y. K. Gong, “Tunable band-pass plasmonic waveguide filters with nanodisk resonators,” Opt. Express 18, 17922 (2010).
http://dx.doi.org/10.1364/OE.18.017922
7.
7.H. Lu, X. M. Liu, Y.K. Gong, L. R. Wang, and D. Mao, “Multi-channel plasmonic waveguide filters with disk-shaped nanocavities,” Opt. Commun. 284, 2613 (2011).
http://dx.doi.org/10.1016/j.optcom.2011.01.046
8.
8.W. Cai, J.S. White, and M.L. Brongersma, “Compact, high-speed and power-efficient electro-optic plasmonic modulators,” Nano Lett. 9, 4403 (2009).
http://dx.doi.org/10.1021/nl902701b
9.
9.C. Janke, J. G. Rivas, P. H. Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357 (2005).
http://dx.doi.org/10.1364/OL.30.002357
10.
10.C. J. Min, P. Wang, C. C. Chen, Y. Deng, Y. H. Lu, H. Ming, T. Y. Ning, Y. L. Zhou, and G. Z. Yang, “All optical switching in subwavelength metallic grating structure containing nonlinear optical materials,” Opt. Lett. 33, 869 (2008).
http://dx.doi.org/10.1364/OL.33.000869
11.
11.G. A. Wurtz, R. Pollard, and A. V. Zayats, “Optical bistability in nonlinear surface-plasmon polaritonic crystals,” Phys. Rev. Lett. 97, 057402 (2010).
http://dx.doi.org/10.1103/PhysRevLett.97.057402
12.
12.M. Sluijter, D. K.G. de Boer, and H. P. Urbach, “Simulations of a liquid-crystal-based electro-optical switch,” Opt. Lett. 34, 94 (2008).
http://dx.doi.org/10.1364/OL.34.000094
13.
13.B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: A framework to reduce losses in plasmonic nanostructures,” ACS Nano. 7, 6978 (2013).
http://dx.doi.org/10.1021/nn4021967
14.
14.V. E. Bochenkov, M. Frederiksen, and D. S. Sutherland, “Enhanced refractive index sensitivity of elevated short range ordered nanohole arrays in optically thin plasmonic Au films,” Opt. Express 21, 14763 (2013).
http://dx.doi.org/10.1364/OE.21.014763
15.
15.T. S. Wu, Y. M. Liu, Z. Y. Yu, Y. W. Peng, C. G. Shu, and H. Ye, “The sensing characteristics of plasmonic waveguide with a ring resonator,” Opt. Express 22, 7669 (2014).
http://dx.doi.org/10.1364/OE.22.007669
16.
16.T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17, 24096 (2009).
http://dx.doi.org/10.1364/OE.17.024096
17.
17.J. Chen, Y. D. Li, Z. Q. Chen, J. Y. Peng, J. Qian, J. J. Xu, and Q. Sun, “Tunable resonances in the plasmonic split-ring resonator,” IEEE Photon. J. 6, 1 (2014).
18.
18.Z. Zhang, L. Zhang, H. Li, and H. Chen, “Plasmon induced transparency in a surface Plasmon polariton waveguide with a comb line slot and rectangle cavity,” Appl. Phys. Lett. 104, 231114 (2014).
http://dx.doi.org/10.1063/1.4883647
19.
19.R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.243902
20.
20.Z. H. He, H. J. Li, S. P. Zhan, G. T. Cao, and B. X. Li, “Combined theoretical analysis for plasmon-induced transparency in waveguide systems,” Opt. Lett. 39, 5543 (2014).
http://dx.doi.org/10.1364/OL.39.005543
21.
21.A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A. 59, 4732 (1999).
http://dx.doi.org/10.1103/PhysRevA.59.4732
22.
22.A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavityoptoelectronic devices,” Appl. Opt. 37, 5271 (1998).
http://dx.doi.org/10.1364/AO.37.005271
23.
23.Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Exp. 19, 3251 (2011).
http://dx.doi.org/10.1364/OE.19.003251
24.
24.B. Tang, J. Wang, X. Xia, X. Liang, C. Song, and S. Qu, “Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators,” Appl. Phys. Exp. 8, 032202 (2015).
http://dx.doi.org/10.7567/APEX.8.032202
25.
25.F. Lu, Z. Wang, K. Li, and A. Xu, “A plasmonic triple-wavelength demultiplexing structure based on MIM waveguide with side-coupled nanodisk cavities,” IEEE Trans. Nanotechnol. 12, 1185 (2013).
http://dx.doi.org/10.1109/TNANO.2013.2284833
26.
26.G. G. Zheng, W. Su, Y. Y. Chen, C.Y. Zhang, M. Lai, and Y. Z. Liu, “Band-stop filters based on a coupled circular ring metal–insulator–metal resonator containing nonlinear material,” J. Opt. 14, 055001 (2012).
http://dx.doi.org/10.1088/2040-8978/14/5/055001
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942937
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942937
2016-02-23
2016-12-07

Abstract

The tunable multimode electromagnetically induced absorption (EIA)-like transmission was investigated in a two-ring system. In this system, by introducing asymmetry factor =  - , we provided several ways to modulate the EIA-like transmission spectra. An off-to-on EIA-like response could be realized by changing the radius or the refractive index of the rings. During the off-to-on process, we found the red shift and blue shift effects in the spectra are appeared and the widths of EIA-like dips are broadened. Numerical simulation by finite element method was conducted to verify our discussion. We believe all these would provide guidelines to design the useful EIA-like devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942937.html;jsessionid=riyKOUfUgXx5HJzpq8zz5v10.x-aip-live-02?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942937&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942937'
Right1,Right2,Right3,