Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942978
1.
1.W. J. Miniscalco, J. Lightw. Technol. 9, 234 (1991).
http://dx.doi.org/10.1109/50.65882
2.
2.W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, IEEE J. Quantum. Electron. 27, 1004 (1991).
http://dx.doi.org/10.1109/3.83335
3.
3.A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
http://dx.doi.org/10.1049/el:19970585
4.
4.T. Haruna, J. Iihara, K. Yamaguchi, Y. Saito, S. Ishikawa, M. Onishi, and T. Murata, Opt. Express 14, 11036 (2006).
http://dx.doi.org/10.1364/OE.14.011036
5.
5.B. T. Stone and K. L. Bray, J. Non-Cryst. Solid 197, 136 (1996).
http://dx.doi.org/10.1016/0022-3093(95)00514-5
6.
6.S. Berneschi, M. Bettinelli, M. Brenci, G. N. Conti, S. Pelli, S. Sebastiani, C. Siligardi, A. Speghini, and G. C. Righini, J. Non-Cryst. Solids 351, 1747 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.04.008
7.
7.K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, J. Appl. Phys. 59, 3430 (1986).
http://dx.doi.org/10.1063/1.336810
8.
8.K. Arai, S. Yamasaki, J. Isoya, and H. Namikawa, J. Non-Cryst. Solids 196, 216 (1996).
http://dx.doi.org/10.1016/0022-3093(95)00589-7
9.
9.P. M. Peters and S. N. Houde-Walter, Appl. Phys. Lett. 70, 541 (1997).
http://dx.doi.org/10.1063/1.118334
10.
10.P. M. Peters and S. N. Houde-Walter, J. Non-Cryst. Solids 239, 162 (1998).
http://dx.doi.org/10.1016/S0022-3093(98)00733-9
11.
11.S. Sen, J. Non-Cryst. Solids 261, 226 (2000).
http://dx.doi.org/10.1016/S0022-3093(99)00564-5
12.
12.A. Saitoh, S. Matsuishi, S. W. Choi, J. Nishii, M. Oto, M. Hirano, and H. Hosono, J. Phys. Chem. B 110, 7617 (2006).
http://dx.doi.org/10.1021/jp060702w
13.
13.T. Mizoguchi, S. Findlay, A. Masuno, Y. Saito, H. Inoue, and Y. Ikuhara, ACS Nano 7, 5058 (2013).
http://dx.doi.org/10.1021/nn400605z
14.
14.A. Masuno, H. Inoue, and Y. Saito, Opt. Mater. 33, 1898 (2011).
http://dx.doi.org/10.1016/j.optmat.2011.03.011
15.
15.T. P. Seward III, D. R. Uhlmann, and D. Turnbull, J. Am. Ceram. Soc. 51, 278 (1968).
http://dx.doi.org/10.1111/j.1151-2916.1968.tb13858.x
16.
16.V. McGahay and M. Tomozawa, J. Non-Cryst. Solids 109, 27 (1989).
http://dx.doi.org/10.1016/0022-3093(89)90437-7
17.
17.A. Masuno, H. Inoue, J. Yu, and Y. Arai, J. Appl. Phys. 108, 063520 (2010).
http://dx.doi.org/10.1063/1.3482040
18.
18.A. Masuno, Y. Watanabe, H. Inoue, Y. Arai, J. Yu, and M. Kaneko, Phys. Status Solidi C 9, 2424 (2012).
http://dx.doi.org/10.1002/pssc.201200313
19.
19.K. Kato, A. Masuno, and H. Inoue, Phys. Chem. Chem. Phys. 17, 6495 (2015).
http://dx.doi.org/10.1039/C4CP05861E
20.
20.Y. Yang, Z. Yang, P. Li, X. Li, Q. Guo, and B. Chen, Opt. Mater. 32, 133 (2009).
http://dx.doi.org/10.1016/j.optmat.2009.06.016
21.
21.J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang, J. Appl. Phys. 93, 977 (2003).
http://dx.doi.org/10.1063/1.1531840
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942978
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942978
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942978
2016-02-24
2016-10-01

Abstract

Glasses with the composition BaO–(99.9 − )SiO–0.1ErO (0 ≤ ≤ 34.9) were fabricated by a levitation technique. The glasses in the immiscibility region were opaque due to chemical inhomogeneity, while the other glasses were colorless and transparent. The scanning electron microscope observations and electron probe microanalysis scan profiles revealed that more Er3+ions were preferentially distributed in the regions where more Ba2+ions existed in the chemically inhomogeneous glasses. The synchronicity of the spatial distributions of the two ions initially increased with increasing and then decreased when the Ba2+ concentration exceeded a certain value. The peak shape and lifetime of the fluorescence at 1.55 μm depended on as well as the spatial distribution of both ions. These results indicate that although ErO polyhedra are preferentially coordinated with Ba2+ions and their local structure is affected by the coordination of Ba2+, there is a maximum in the amount of Ba2+ions that can coordinate ErO polyhedra since the available space for Ba2+ions is limited. These findings provide us with efficient ways to design the chemical composition of glasses with superior Er3+fluorescenceproperties for optical communication network systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942978.html;jsessionid=Ba5irvNvo5YYoDvU9BB3Q8Vt.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942978&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942978&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942978'
Right1,Right2,Right3,