Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4942979
1.
1.M. Riherd and S. Roy, J. Phys. D: Appl. Phys. 46, 485203 (2013).
http://dx.doi.org/10.1088/0022-3727/46/48/485203
2.
2.A. Washburn, “NASA’s current plans for ERA airframe technology,” 48th AIAA Aerospace Sciences Meeting, Orlando, FL (2010).
3.
3.J. R. Roth, D. M. Sherman, and S. P. Wilkinson, AIAA Journal 38(7), (2000).
http://dx.doi.org/10.2514/2.1110
4.
4.S. P. Wilkinson, “Investigation of an oscillating surface plasma for turbulent drag reduction,” 41st Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, AIAA 2003-1023 (2003).
5.
5.E. Moreau, J Phys D- Appl Phys 40, 605 (2007).
http://dx.doi.org/10.1088/0022-3727/40/3/S01
6.
6.J. R. Roth, Physics of Plasmas 10(5), (2003).
http://dx.doi.org/10.1063/1.1564823
7.
7.J. Huang, T. C. Corke, and F. O. Thomas, AIAA Journal 44(1), (2006).
8.
8.J. R. Roth, D. M. Sherman, and S. P. Wilkinson, “Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma,” AIAA Meeting (Reno, USA, January 1998) paper #98-0328.
9.
9.T. C. Corke, C. L. Enloe, and S. P. Wilkinson, Annual Rev Fluid Mechanics 42, 1 (2010).
http://dx.doi.org/10.1146/annurev-fluid-121108-145550
10.
10.F. O. Thomas, T. C. Corke, M. Iqbal, A. Kozlov, and D. Schatzman, AIAA Journal 47(9), (2009).
http://dx.doi.org/10.2514/1.41588
11.
11.M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, and M. Cazalens, Experiments in Fluids 43, 917 (2007).
http://dx.doi.org/10.1007/s00348-007-0362-7
12.
12.R. Durscher and S. Roy, J Phys D- Appl Phys 45, 035202 (2012).
http://dx.doi.org/10.1088/0022-3727/45/3/035202
13.
13.S. Roy and C.-C. Wang, J Phys D- Appl Phys 42, 032004 (2009).
http://dx.doi.org/10.1088/0022-3727/42/3/032004
14.
14.M. Riherd and S. Roy, J Appl Phys 114, 083303 (2013).
http://dx.doi.org/10.1063/1.4818622
15.
15.M. Riherd and S. Roy, J Phys D- Appl Phys 47(12), 125203 (2014).
http://dx.doi.org/10.1088/0022-3727/47/12/125203
16.
16.R.J. Adrian and R. J., “Hairpin vortex organization in wall turbulence,” Physics of Fluids 19, 041301 (2007).
http://dx.doi.org/10.1063/1.2717527
17.
17.R.M. Wood, A discussion of a heavy truck advanced aerodynamic trailer system. Presented at Int. Symp. Heavy Veh. Weights Dimens., 9th, University Park, PA (2006).
18.
18.H. Choi, J. Lee, and H. Park, Annu. Rev. Fluid Mech. 46, 44168 (2014).
http://dx.doi.org/10.1146/annurev-fluid-011212-140616
19.
19.J. Patten, B. McAuliffe, W. Mayda, and B. Tanguay, NRC-CNRC Technical report no. CSTT-HVC-TR-205, (2012).
20.
20.K.-S. Choi, T. Jukes, and R. Whalley, Phil Trans R Soc A 369, 14431458 (2011).
http://dx.doi.org/10.1098/rsta.2010.0362
21.
21.P. Sujar-Garrido, N. Benard, E. Moreau, and J. P. Bonnet, Experiments in Fluids 56, 70 (2015).
http://dx.doi.org/10.1007/s00348-015-1939-1
22.
22.H. Zare-Behtash, K. Kontis, and S. Roy, “Flow Control at Subsonic Speeds using Serpentine Plasma Actuators,” in 45th AIAA Plasmadynamics and Lasers Conf, AIAA-2014-2812 (2014).
23.
23.W. Schoppa and F. Hussain, Phys. Fluids 10(5), 1049-51 (1998).
http://dx.doi.org/10.1063/1.869789
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4942979
Loading
/content/aip/journal/adva/6/2/10.1063/1.4942979
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4942979
2016-02-24
2016-12-05

Abstract

We propose and demonstrate reduction of aerodynamicdrag for a realistic geometry at highway speeds using serpentine dielectric barrier discharge actuators. A comparable linear plasma actuator fails to reduce the drag at these speeds. Experimental data collected for linear and serpentine plasma actuators under quiescent operating conditions show that the serpentine design has profound effect on near wall flow structure and resulting drag. For certain actuator arrangement, the measured drag reduced by over 14% at 26.8 m/s (60 mph) and over 10% at 31.3 m/s (70 mph) opening up realistic possibility of reasonable energy savings for full scale ground vehicles. In addition, the power consumption data and drag reduction effectiveness for different input signals are also presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4942979.html;jsessionid=RGrXZ4PQNohjAVy5JKfezExZ.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4942979&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4942979&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4942979'
Right1,Right2,Right3,