Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459(7248), 820-823 (2009).
2.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. Dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys Rev Lett 99(21), 216802 (2007).
3.A. Luican, G. H. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, Phys Rev Lett 106(12), 126802 (2011).
4.G. H. Li, A. Luican, J. M. B. L. dos Santos, A. H. Castro Neto, A. Reina, J. Kong, and E. Y. Andrei, Nat Phys 6(2), 109-113 (2010).
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666-669 (2004).
6.W. Liu, S. Kraemer, D. Sarkar, H. Li, P. M. Ajayan, and K. Banerjeet, Chem Mater 26(2), 907-915 (2014).
7.Y. P. Wu, H. Chou, H. X. Ji, Q. Z. Wu, S. S. Chen, W. Jiang, Y. F. Hao, J. Y. Kang, Y. J. Ren, R. D. Piner, and R. S. Ruoff, Acs Nano 6(9), 7731-7738 (2012).
8.X. Liu, L. Fu, N. Liu, T. Gao, Y. F. Zhang, L. Liao, and Z. F. Liu, J Phys Chem C 115(24), 11976-11982 (2011).
9.P. Zhao, S. Kim, X. Chen, E. Einarsson, M. Wang, Y. N. Song, H. T. Wang, S. Chiashi, R. Xiang, and S. Maruyama, Acs Nano 8(11), 11631-11638 (2014).
10.J. K. Wassei, M. Mecklenburg, J. A. Torres, J. D. Fowler, B. C. Regan, R. B. Kaner, and B. H. Weiller, Small 8(9), 1415-1422 (2012).
11.Z. Q. Luo, T. Yu, J. Z. Shang, Y. Y. Wang, S. Lim, L. Liu, G. G. Gurzadyan, Z. X. Shen, and J. Y. Lin, ADVANCED FUNCTIONAL MATERIALS 21(5), 911-917 (2011).
12.W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Carbon 49(13), 4122-4130 (2011).
13.L. X. Liu, H. L. Zhou, R. Cheng, W. J. Yu, Y. Liu, Y. Chen, J. Shaw, X. Zhong, Y. Huang, and X. F. Duan, ACS NANO 6(9), 8241-8249 (2012).
14.H. B. Sun, J. Wu, Y. Han, J. Y. Wang, F. Q. Song, and J. G. Wan, J Phys Chem C 118(26), 14655-14661 (2014).
15.R. Gulotty, S. Das, Y. Z. Liu, and A. V. Sumant, Carbon 77, 341-350 (2014).
16.Q. Y. Li, H. Chou, J. H. Zhong, J. Y. Liu, A. Dolocan, J. Y. Zhang, Y. H. Zhou, R. S. Ruoff, S. S. Chen, and W. W. Cai, Nano Lett 13(2), 486-490 (2013).
17.W. G. Luo, H. F. Wang, K. M. Cai, W. P. Han, P. H. Tan, P. A. Hu, and K. Y. Wang, Chinese Phys Lett 31(6) (2014).
18.R. Kato, K. Tsugawa, Y. Okigawa, M. Ishihara, T. Yamada, and M. Hasegawa, Carbon 77, 823-828 (2014).
19.L. S. Bernard, M. Spina, J. Jacimovic, P. R. Ribic, A. Walter, D. Y. Oberli, E. Horvath, L. Forro, and A. Magrez, Carbon 71, 11-19 (2014).
20.H. L. Zhou, W. J. Yu, L. X. Liu, R. Cheng, Y. Chen, X. Q. Huang, Y. Liu, Y. Wang, Y. Huang, and X. F. Duan, Nat Commun 4, 3096 (2013).
21.Z. Lin, T. Huang, X. H. Ye, M. L. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. W. Zhu, Nanotechnology 24(27), 275302 (2013).
22.A. Umair and H. Raza, Nanoscale Res Lett 7, 437 (2012).
23.Z. Z. Sun, A. R. O. Raji, Y. Zhu, C. S. Xiang, Z. Yan, C. Kittrel, E. L. G. Samuel, and J. M. Tour, Acs Nano 6(11), 9790-9796 (2012).
24.S. Nie, W. Wu, S. R. Xing, Q. K. Yu, J. M. Bao, S. S. Pei, and K. F. McCarty, New J Phys 14, 093028 (2012).
25.H. Bi, F. Q. Huang, W. Zhao, X. J. Lu, J. Chen, T. Q. Lin, D. Y. Wan, X. M. Xie, and M. H. Jiang, Carbon 50(8), 2703-2709 (2012).
26.K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, Nano Lett 11(3), 1106-1110 (2011).
27.S. Lee, K. Lee, and Z. H. Zhong, Nano Lett 10(11), 4702-4707 (2010).
28.A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, Nano Res 2(6), 509-516 (2009).
29.L. Gan, H. J. Zhang, R. Z. Wu, Q. C. Zhang, X. W. Ou, Y. Ding, P. Sheng, and Z. T. Luo, Nanoscale 7(6), 2391-2399 (2015).
30.X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312-1314 (2009).
31.L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys Rep 473(5-6), 51-87 (2009).
32.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys Rev Lett 97(18), 187401 (2006).
33.P. Xu, Y. R. Yang, D. Qi, S. D. Barber, M. L. Ackerman, J. K. Schoelz, T. B. Bothwell, S. Barraza-Lopez, L. Bellaiche, and P. M. Thibado, Appl Phys Lett 100(20), 201601 (2012).
34.G. M. Rutter, S. Y. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Nat Phys 7(8), 649-655 (2011).
35.Y. Zhang, Z. Li, P. Kim, L. Y. Zhang, and C. W. Zhou, ACS NANO 6(1), 126-132 (2012).
36.C. F. Lin, Y. X. Feng, Y. D. Xiao, M. Durr, X. Q. Huang, X. Z. Xu, R. G. Zhao, E. G. Wang, X. Z. Li, and Z. H. Hu, Nano Lett 15(2), 903-908 (2015).
37.Y. F. Hao, M. S. Bharathi, L. Wang, Y. Y. Liu, H. Chen, S. Nie, X. H. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, SCIENCE 342(6159), 720-723 (2013).
38.L. Gan and Z. T. Luo, ACS NANO 7(10), 9480-9488 (2013).
39.X. L. Yin, Y. L. Li, F. Ke, C. F. Lin, H. B. Zhao, L. Gan, Z. T. Luo, R. G. Zhao, T. F. Heinz, and Z. H. Hu, Nano Res 7(11), 1613-1622 (2014).
40.Y. F. Zhu, K. Mimura, J. W. Lim, M. Isshiki, and Q. Jiang, Metall Mater Trans A 37A(4), 1231-1237 (2006).
41.M. L. Narula, V. B. Tare, and W. L. Worrell, Metall Trans B 14(4), 673-677 (1983).
42.V. M. Horrigan, Metall Trans A 8(5), 785-787 (1977).
43.S. Gottardi, K. Muller, L. Bignardi, J. C. Moreno-Lopez, T. A. Pham, O. Ivashenko, M. Yablonskikh, A. Barinov, J. Bjork, P. Rudolf, and M. Stohr, Nano Lett 15(2), 917-922 (2015).

Data & Media loading...


Article metrics loading...



Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphenegrowth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H starting temperature was above 700°C, continuous monolayergraphene films were obtained. When the H starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H flow caused Cuoxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd