Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/6/2/10.1063/1.4943040
1.
1.Y. B. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature 459(7248), 820-823 (2009).
http://dx.doi.org/10.1038/nature08105
2.
2.E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. Dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. Castro Neto, Phys Rev Lett 99(21), 216802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216802
3.
3.A. Luican, G. H. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, and E. Y. Andrei, Phys Rev Lett 106(12), 126802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.126802
4.
4.G. H. Li, A. Luican, J. M. B. L. dos Santos, A. H. Castro Neto, A. Reina, J. Kong, and E. Y. Andrei, Nat Phys 6(2), 109-113 (2010).
http://dx.doi.org/10.1038/nphys1463
5.
5.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666-669 (2004).
http://dx.doi.org/10.1126/science.1102896
6.
6.W. Liu, S. Kraemer, D. Sarkar, H. Li, P. M. Ajayan, and K. Banerjeet, Chem Mater 26(2), 907-915 (2014).
http://dx.doi.org/10.1021/cm4021854
7.
7.Y. P. Wu, H. Chou, H. X. Ji, Q. Z. Wu, S. S. Chen, W. Jiang, Y. F. Hao, J. Y. Kang, Y. J. Ren, R. D. Piner, and R. S. Ruoff, Acs Nano 6(9), 7731-7738 (2012).
http://dx.doi.org/10.1021/nn301689m
8.
8.X. Liu, L. Fu, N. Liu, T. Gao, Y. F. Zhang, L. Liao, and Z. F. Liu, J Phys Chem C 115(24), 11976-11982 (2011).
http://dx.doi.org/10.1021/jp202933u
9.
9.P. Zhao, S. Kim, X. Chen, E. Einarsson, M. Wang, Y. N. Song, H. T. Wang, S. Chiashi, R. Xiang, and S. Maruyama, Acs Nano 8(11), 11631-11638 (2014).
http://dx.doi.org/10.1021/nn5049188
10.
10.J. K. Wassei, M. Mecklenburg, J. A. Torres, J. D. Fowler, B. C. Regan, R. B. Kaner, and B. H. Weiller, Small 8(9), 1415-1422 (2012).
http://dx.doi.org/10.1002/smll.201102276
11.
11.Z. Q. Luo, T. Yu, J. Z. Shang, Y. Y. Wang, S. Lim, L. Liu, G. G. Gurzadyan, Z. X. Shen, and J. Y. Lin, ADVANCED FUNCTIONAL MATERIALS 21(5), 911-917 (2011).
http://dx.doi.org/10.1002/adfm.201002227
12.
12.W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Carbon 49(13), 4122-4130 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.05.047
13.
13.L. X. Liu, H. L. Zhou, R. Cheng, W. J. Yu, Y. Liu, Y. Chen, J. Shaw, X. Zhong, Y. Huang, and X. F. Duan, ACS NANO 6(9), 8241-8249 (2012).
http://dx.doi.org/10.1021/nn302918x
14.
14.H. B. Sun, J. Wu, Y. Han, J. Y. Wang, F. Q. Song, and J. G. Wan, J Phys Chem C 118(26), 14655-14661 (2014).
http://dx.doi.org/10.1021/jp5030735
15.
15.R. Gulotty, S. Das, Y. Z. Liu, and A. V. Sumant, Carbon 77, 341-350 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.05.037
16.
16.Q. Y. Li, H. Chou, J. H. Zhong, J. Y. Liu, A. Dolocan, J. Y. Zhang, Y. H. Zhou, R. S. Ruoff, S. S. Chen, and W. W. Cai, Nano Lett 13(2), 486-490 (2013).
http://dx.doi.org/10.1021/nl303879k
17.
17.W. G. Luo, H. F. Wang, K. M. Cai, W. P. Han, P. H. Tan, P. A. Hu, and K. Y. Wang, Chinese Phys Lett 31(6) (2014).
18.
18.R. Kato, K. Tsugawa, Y. Okigawa, M. Ishihara, T. Yamada, and M. Hasegawa, Carbon 77, 823-828 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.05.087
19.
19.L. S. Bernard, M. Spina, J. Jacimovic, P. R. Ribic, A. Walter, D. Y. Oberli, E. Horvath, L. Forro, and A. Magrez, Carbon 71, 11-19 (2014).
http://dx.doi.org/10.1016/j.carbon.2013.12.032
20.
20.H. L. Zhou, W. J. Yu, L. X. Liu, R. Cheng, Y. Chen, X. Q. Huang, Y. Liu, Y. Wang, Y. Huang, and X. F. Duan, Nat Commun 4, 3096 (2013).
21.
21.Z. Lin, T. Huang, X. H. Ye, M. L. Zhong, L. Li, J. Jiang, W. Zhang, L. Fan, and H. W. Zhu, Nanotechnology 24(27), 275302 (2013).
http://dx.doi.org/10.1088/0957-4484/24/27/275302
22.
22.A. Umair and H. Raza, Nanoscale Res Lett 7, 437 (2012).
http://dx.doi.org/10.1186/1556-276X-7-437
23.
23.Z. Z. Sun, A. R. O. Raji, Y. Zhu, C. S. Xiang, Z. Yan, C. Kittrel, E. L. G. Samuel, and J. M. Tour, Acs Nano 6(11), 9790-9796 (2012).
http://dx.doi.org/10.1021/nn303328e
24.
24.S. Nie, W. Wu, S. R. Xing, Q. K. Yu, J. M. Bao, S. S. Pei, and K. F. McCarty, New J Phys 14, 093028 (2012).
http://dx.doi.org/10.1088/1367-2630/14/9/093028
25.
25.H. Bi, F. Q. Huang, W. Zhao, X. J. Lu, J. Chen, T. Q. Lin, D. Y. Wan, X. M. Xie, and M. H. Jiang, Carbon 50(8), 2703-2709 (2012).
http://dx.doi.org/10.1016/j.carbon.2012.02.027
26.
26.K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, Nano Lett 11(3), 1106-1110 (2011).
http://dx.doi.org/10.1021/nl104000b
27.
27.S. Lee, K. Lee, and Z. H. Zhong, Nano Lett 10(11), 4702-4707 (2010).
http://dx.doi.org/10.1021/nl1029978
28.
28.A. Reina, S. Thiele, X. T. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, Nano Res 2(6), 509-516 (2009).
http://dx.doi.org/10.1007/s12274-009-9059-y
29.
29.L. Gan, H. J. Zhang, R. Z. Wu, Q. C. Zhang, X. W. Ou, Y. Ding, P. Sheng, and Z. T. Luo, Nanoscale 7(6), 2391-2399 (2015).
http://dx.doi.org/10.1039/C4NR06607C
30.
30.X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312-1314 (2009).
http://dx.doi.org/10.1126/science.1171245
31.
31.L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys Rep 473(5-6), 51-87 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.02.003
32.
32.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys Rev Lett 97(18), 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
33.
33.P. Xu, Y. R. Yang, D. Qi, S. D. Barber, M. L. Ackerman, J. K. Schoelz, T. B. Bothwell, S. Barraza-Lopez, L. Bellaiche, and P. M. Thibado, Appl Phys Lett 100(20), 201601 (2012).
http://dx.doi.org/10.1063/1.4716475
34.
34.G. M. Rutter, S. Y. Jung, N. N. Klimov, D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Nat Phys 7(8), 649-655 (2011).
http://dx.doi.org/10.1038/nphys1988
35.
35.Y. Zhang, Z. Li, P. Kim, L. Y. Zhang, and C. W. Zhou, ACS NANO 6(1), 126-132 (2012).
http://dx.doi.org/10.1021/nn202996r
36.
36.C. F. Lin, Y. X. Feng, Y. D. Xiao, M. Durr, X. Q. Huang, X. Z. Xu, R. G. Zhao, E. G. Wang, X. Z. Li, and Z. H. Hu, Nano Lett 15(2), 903-908 (2015).
http://dx.doi.org/10.1021/nl503635x
37.
37.Y. F. Hao, M. S. Bharathi, L. Wang, Y. Y. Liu, H. Chen, S. Nie, X. H. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, SCIENCE 342(6159), 720-723 (2013).
http://dx.doi.org/10.1126/science.1243879
38.
38.L. Gan and Z. T. Luo, ACS NANO 7(10), 9480-9488 (2013).
http://dx.doi.org/10.1021/nn404393b
39.
39.X. L. Yin, Y. L. Li, F. Ke, C. F. Lin, H. B. Zhao, L. Gan, Z. T. Luo, R. G. Zhao, T. F. Heinz, and Z. H. Hu, Nano Res 7(11), 1613-1622 (2014).
http://dx.doi.org/10.1007/s12274-014-0521-0
40.
40.Y. F. Zhu, K. Mimura, J. W. Lim, M. Isshiki, and Q. Jiang, Metall Mater Trans A 37A(4), 1231-1237 (2006).
41.
41.M. L. Narula, V. B. Tare, and W. L. Worrell, Metall Trans B 14(4), 673-677 (1983).
http://dx.doi.org/10.1007/BF02653953
42.
42.V. M. Horrigan, Metall Trans A 8(5), 785-787 (1977).
http://dx.doi.org/10.1007/BF02664788
43.
43.S. Gottardi, K. Muller, L. Bignardi, J. C. Moreno-Lopez, T. A. Pham, O. Ivashenko, M. Yablonskikh, A. Barinov, J. Bjork, P. Rudolf, and M. Stohr, Nano Lett 15(2), 917-922 (2015).
http://dx.doi.org/10.1021/nl5036463
http://aip.metastore.ingenta.com/content/aip/journal/adva/6/2/10.1063/1.4943040
Loading
/content/aip/journal/adva/6/2/10.1063/1.4943040
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/6/2/10.1063/1.4943040
2016-02-25
2016-12-08

Abstract

Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphenegrowth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H starting temperature was above 700°C, continuous monolayergraphene films were obtained. When the H starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H flow caused Cuoxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/6/2/1.4943040.html;jsessionid=CWu5MYo86fYxDb0LvSmC9Qer.x-aip-live-03?itemId=/content/aip/journal/adva/6/2/10.1063/1.4943040&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/6/2/10.1063/1.4943040&pageURL=http://scitation.aip.org/content/aip/journal/adva/6/2/10.1063/1.4943040'
Right1,Right2,Right3,